Пособие, как сделать стоп-сигнал с бегущими огнями своими силами

Бегущие огни на светодиодах, схема на 12 вольт

Один из вариантов использования твердотельных источников света в декоративных целях – бегущие огни на светодиодах. Способов изготовления этого несложного устройства – масса. Рассмотрим некоторые из них.

Простейшая схема бегущих огней на 12 вольт

В интернете наиболее часто встречается простая «старомодная» схема с использованием счетчика и генератора (рисунок 1).

Рисунок 1

Работа схемы предельно проста и понятна. Генератор построен на основе таймера импульсов, а счетчик выполняет свою основную функцию – считает импульсы и выдает соответствующие логические уровни на своих выходах. К выходам подключены светодиоды, которые загораются при появлении логической единицы и соответственно гаснут при нуле, создавая тем самым эффект бегущих огней. Скорость переключения зависит от частоты генератора, которая в свою очередь зависит от номиналов резистора R1 и конденсатора С1.

Наименования микросхем приведены советские, но они имеют легкодоступные импортные аналоги. Если необходимо увеличить яркость светодиодов, то для увеличения тока нужно подключать их через буферные транзисторы, т.к. сами выходы счетчика имеют достаточно скромную нагрузочную способность.

Подключаем «мозги»

Для получения более сложных эффектов, схема должна строиться на микроконтроллере (далее МК). Хотя в интернете и присутствует множество схем бегущих огней на микроконтроллере, построенных на обыкновенной логике, реализующих различную последовательность зажигания светодиодов, их использование неоправданно и нецелесообразно в наши дни.

Схемы получаются более громоздкими и дорогими. МК же позволяет гибко управлять отдельными светодиодами или их группами, хранить в памяти множество программ световых эффектов и при необходимости чередовать их по заранее заданной последовательности или по внешней команде (например, от кнопки). При этом схема получается весьма компактной и достаточно дешевой.

Рассмотрим основной принцип построения схемы бегущих огней на светодиодах с использованием микроконтроллера.

Для примера возьмем микросхему ATtiny2313 – 8-разрядный МК стоимостью около 1$. Простейшая схема может быть реализована непосредственным подключением светодиодов к выводам I/O (рисунок 2). Эти выводы МК способны обеспечить ток до 20 мА, что более чем достаточно для индикаторных светодиодов.

Необходимое значение тока задается резисторами, включенными последовательно диодам. Значение силы тока рассчитывается по формуле I=(Uпит-ULED)/R. Схемы питания и сброса МК на рисунке не приведены, чтобы не загромождать схему. Эти цепи стандартные и выполняются в соответствии с рекомендациями производителя, приведенными в Data Sheet. При необходимости точного задания временных интервалов (длительности зажигания отдельных светодиодов или полного цикла) можно использовать кварцевый резонатор, подключаемый к выводам 4 и 5 МК.

Если такой необходимости нет, можно обойтись встроенным RC-генератором, а освободившиеся выводы назначить как стандартные выходы и подключить еще пару светодиодов. Максимальное количество светодиодов, которое можно подключить к этому МК – 17 (на рисунке 2 показан вариант подключения 10 светодиодов). Но лучше оставить один-два вывода для кнопок управления, чтобы была возможность переключать режимы бегущего огня.

Рисунок 2

Вот и всё, что касается «железа». Дальше всё зависит от программного обеспечения. Алгоритм может быть любым. К примеру, можно записать в память несколько режимов и настроить интервал повторения каждой либо подключить две кнопки: одну для переключения режимов, другую для регулировки скорости. Написание подобной программы – достаточно простая задача даже для человека никогда не работавшего ранее с МК, однако если изучать программирование лень или некогда, а «оживить» бегущий огонь на светодиодах очень хочется – всегда можно скачать готовое ПО.

le-diod.ru

Бегущие огни с выбором программ

Для более четкого представления о работе прибора рассмотрим некоторые его основные узлы. Начнём рассматривать работу бегущих огней с микросхемы К155ЛА3 которая является набором из четырёх логических элементов 2И-НЕ изображённого на первом рисунке:

1,2,4,5,9,10,12,13 – входы X1-X8;

14 – напряжение питания;

Мы используем только два элемента 2И-НЕ. Ниже приведённая схема генератора выдаёт чередование прямоугольных импульсов логического нуля и логической единицы показанных на графике.

На генераторе предусмотрена регулировка скорости и продолжительности чередования логических импульсов с помощью R1 и C1.

Если к выводу 6 подключить светодиод через резистор 1 кОм – то мы увидим, что у нас получилась простая мигалка на микросхеме с регулируемой скоростью мерцания.

Далее рассмотрим микросхему К155ТМ2 – которая включает в себя два независимых D-триггера, срабатывающих по положительному фронту тактового сигнала, к ней и осуществим подключение тактового генератора.

Условное графическое обозначение К155ТМ2 приведено на рис.2. На рис.3 приведена структурная схема и таблица истинности одного из элементов микросхемы, где каждый элемент состоит из четырёх элементов 2И-НЕ.

А ниже приводится «расшифровка” выводов микросхемы:

1 – инверсный вход установки «0″ R1;

3 – вход синхронизации C1;

4 – инверсный вход установки «1″ S1;

6 – выход инверсный Q1;

8 – выход инверсный Q2;

10 – инверсный вход установки «1″ S2;

11 – вход синхронизации C2;

13 – инверсный вход установки «0″ R2;

14 – напряжение питания;

Далее мы кратко рассмотрим работу одного каскада триггера изображённого на рис.4.

Подключим вывод 2 к инверсному выводу 6 и подключим к выводу 3 тактовый генератор. При поступлении логической единицы на вывод 3 на выводе 5 будет переключение на логическую единицу, при прохождении очередной логической единицы на вывод 3 – произойдёт переключение на логический ноль (вывод 5) и так будет происходить переключение до бесконечности. На выводе 6 (который является инверсным) будет зеркальное значение 5-го вывода.

А бегущие огни составим из тактового генератора и четырёх элементов триггера (2 микросхемы К155ТМ2) рис.5

На схеме мы видим не фиксируемую кнопку S2 которая служит для переключения подпрограмм и селектор S1 которым осуществляется переключение основных программ. Если сделать небольшие изменения в схеме – отсоединить вывод идущий к 13 ноге D1.2 и подключить его к выводу 10 D1.2 и сделать то же самое на второй микросхеме, то изменятся и программы индикации (изменение отмечено на схеме пунктиром). Если использовать многосекционный селектор S1, то можно подключить отмеченное пунктиром изменение к селектору и тем самым увеличить число программ.

В схеме используются лампочки напряжением 2.5-3.6 вольта, но если использовать светодиоды, то надобность в транзисторах отпадает (на схеме отмечено красным квадратом) и подключение светодиодов осуществляется к Т,Т1,М,М1,Р,Р1,F,F1 рис.5а.

Если использовать лампы на 220 вольт, то вместо транзисторов нужно подключить симисторы или как их ещё называют симметричные тиристоры, триодный тиристор или триак. Условное графическое обозначение симистора на рис.6

Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока. Структура этого полупроводникового прибора показана на рис.6а. На рис.6 б внешний вид симистора КУ208.

Здесь показана схема бегущих огней с симисторным управлением:

Внешний вид устройства:

Используемые детали в бегущих огнях можно заменить на импортные и отечественные аналоги: К155ЛА3 на SN7400, К155ТМ2 на SN7474N, транзисторы КТ315 на КТ342; КТ503; КТ3102; 2N9014; ВС546В, а КУ208 на BT134; BT136. Светодиоды можно применять любые. Стоимость деталей приблизительно составляет 60 – 100 рублей.

Данную схему легко переработать и изменить алгоритм работы.

Сама схема имеет минимум легкодоступных деталей, легка в сборке и при правильном монтаже в наладке не нуждается.

LiveInternetLiveInternet

Схема дополнительного стоп-сигнала бегущий огонь.

Дополнительный стоп_сигнал с эффектом бегущего огня

В этой статье мы приведем вам несколько принципиальных схем, на базе которых можно собрать дополнительный повторитель стоп-сигнала автомобиля с эффектом бегущего огня. Не будем изливать рассуждения по поводу полезности и красивости данного устройства, а сразу перейдем непосредственно к делу. Рассмотрим варианты схем бегущих огней для повторителя:

Первый вариант схемы бегущих огней для стоп-сигнала:

Схема не сложная, реализована на двух микросхемах К561ПУ4. Каждая микросхема содержит 6 неинвертирующих повторителей В качестве ключей стоят кремниевые транзисторы КТ817. Нагрузкой служит панель с установленными на ней 25 лампочками, рассчитанными на напряжение 13,5 Вольт и ток 0,16 Ампер. На клемму “+13V” подается прямой “ПЛЮС” бортовой сети автомобиля, например, от цепи питания прикуривателя. Провод “МАССА” прикручивается в любую точку кузова (при подключении убедитесь в наличии хорошего электрического контакта), и третий провод подключается к любой штатной лампе стоп-сигнала автомобиля. Расположение ламп на панели следующее, лампа Н1 находится в самом центре, далее две лампы первого канала, расположенные по обе стороны от Н1, далее две лампы второго канала, расположенные по обе стороны ламп первого канала, и так далее. То есть, при нажатии на педаль тормоза сначала загорится точка в центре, потом поочередно будут добавляться к свечению остальные лампы, как бы из центра возникает расходящаяся в стороны световая полоса. Когда педаль тормоза будет отпущена, погаснет сначала центральная лампа, а потом поочередно в такой же последовательности погаснут и остальные.

Панель доп_стоп_сигнала

Не смотря на простоту схемы, смотрится такой стоп-сигнал довольно оригинально.

Второй вариант схемы бегущих огней для стоп-сигнала:

Этот вариант собран на микросхеме-счетчике К561ИЕ8, генератор импульсов – на К561ЛА7. Частота генерации зависит от номиналов резистора R1, и конденсатора С1. Ввиду того, что в качестве нагрузки используются светодиоды, в качестве ключей применены менее мощные по сравнению с предыдущей схемой транзисторы КТ315. Принципиальная схема на следующем рисунке:

Доп_сигнал_бегущий огонь_схема 2

Расположение светодиодов такое же как и в предыдущем варианте – от центра в разные стороны. Правда световой эффект получается немного другой. Простыми словами, бегущий огонь будет от центра разбегаться в стороны, пока педаль тормоза не будет отпущена. Подключается устройство к штатной лампе стоп-сигнала автомобиля. К сожалению печатной платы в формате LAY у нас не нашлось, ну а в бумажном варианте она выглядит следующим образом:

Третий вариант схемы бегущих огней для стоп-сигнала:

Рассмотрим еще третий вариант бегущих огней для стоп-сигнала. Применение микросхем реверсивного счетчика К561ИЕ11 и дешифратора К155ИД3 позволило реализовать эффект бегущего огня с изменением направления переключения ламп, то есть реализовать автореверс. Схема устройства следующая:

Доп_сигнал_бегущий огонь_схема 3

Схема состоит из следующих узлов: • DD1.1 , DD1.2 — генератор импульсов частотой 5 Гц • DD1.3 , DD1.4 — триггер • DD2 — реверсивный счетчик • DD3 — дешифратор • DA1 — интегральный стабилизатор на напряжение 5 Вольт Сигнал на изменение направления поочередного зажигания светодиодов (срабатывания триггера), снимается с 1-й и 17-й ножки дешифратора. То есть эффект будет такой: волной зажглись, а потом волной погасли. Частоту переключения можно изменить путем подбора номинала резистора R1 или емкости С1, в остальном, все вышеприведенные схемы собранные без ошибок и исправности радиоэлементов в дополнительных настройках не нуждаются. Дополнение

— похожая схема с немного измененной элементной базой:

Поделки своими руками для автолюбителей

Всех приветствую сегодня рассмотрим простую конструкцию бегущей строки на светодиодах с возможностью регулировки скорости приключений.

Схема.


Схема состоит и задающего генератора на базе задающего таймера NЕ 555, который включен по схеме низкочастотного генератора прямоугольных импульсов и микросхемы CD 4017 наш аналогК561ИЕ8.

Микросхема CD 4017 из себя представляет десятичный счётчик дешифратор позволяющий переводить двоичный код в электрический сигнал. Она имеет 10 выходов и 1 ход каждый импульс на входе заставляет микросхему последовательно переключать выходы, притом в каждой промежуток времени открыть только один выход.


Нагружая выхода микросхемы светодиодами и подавая последовательность импульсов на вход мы можем наблюдать поочерёдное переключение светодиодов, при том чем выше частота входных импульсов, тем быстрее будут переключаться светодиоды.

На вход можно подавать импульс с любого генератора хоть мультивибратора, в нашем случае импульсы образует микросхема NЕ 555, а путем вращения переменного резистора R1 можно изменять частоту импульсов и скорость переключения светодиодов в целом.


Микросхема имеет 10 выходов, а значит можно подключать 10 светодиодов при том можно использовать даже линейку из двух или трех последовательно соединенных светодиодов. Я немножко не рассчитал диаметр светодиодов и они при вертикальной установки попросту не влезли, поэтому пришлось их слегка подточить, учитывайте это при сборке, либо используйте MSD светодиоды, которые можно припоять со стороны печатной платы.


Печатная плата с первого взгляда может показаться сложной, но это не так, кстати в конце статьи есть ссылка на скачивание платы.

Схема может работать с пятидесятипроцентным разбросом номиналов используемых компонентов

Обратите внимание на токограничивающие резисторы для светодиодов в моем случае их количество равно количеству светодиодов, но можно ограничиться всего одним общим резистором

Микросхемы были установлены на панельки беспаячного монтажа, особого смысла в этом нет, просто в моем случае иногда приходится повторно использовать компоненты со старых проектов, а понимаете позволяет быстро извлечь микросхемы без использования паяльника. Диапазон питающих напряжений от пяти до двенадцати вольт, ток потребления от источника в 9 вольт меньше и десяти миллиампер. Собирайте наслаждайтесь, радуйте и удивляйте близких тем более, что применение данной схемы может быть где угодно, например у меня знакомый на этой основе сделал поворотники в автомобиле, очень красиво смотрятся.

Плата в формате .lay;

Автор; АКА КАСЬЯН

Популярное;

  • Индикатор аудио сигнала, простая схема
  • Автомобильный стробоскоп простая схема для сборки своими руками
  • Динамические поворотники на микроконтроллере своими руками
  • Простой и точный индикатор заряда-разряда АКБ
  • Схема зарядного устройства для восстановления АКБ реверсивным током
  • Стабилизатор тока для светодиодов
  • Делаем светодиодную лампу своими руками
  • Простой регулятор напряжения на LM317, схема

Бегущие огни на светодиодах своими руками

В продаже имеется огромное количество различных мигающих цветными огоньками светодиодных девайсов, способных сделать ярче любой праздник. Зачем покупать стандартные светодиодные мигалки, когда намного интереснее за несколько часов своими руками собрать оригинальное и полностью функциональное устройство, способное переключать светодиоды в определенной последовательности, тем самым создавая эффект бегущих огней. Для начинающих радиолюбителей, эта самоделка будет замечательным проектом выходного дня.

На этом рисунке изображена схема бегущих огней на светодиодах.

Схема бегущих светодиодных огней на микросхеме NE555, CD4017, CD4022

Устройство состоит из двух микросхем, принцип работы очень простой. Задающий генератор импульсов выполнен на универсальной микросхеме NE555. Сигнал с генератора поступает на вход двоичного счетчика дешифратора CD4017 или CD4022 эти микросхемы аналогичные и полностью взаимозаменяемые. Микросхема имеет 10 выходов, к которым подключены светодиоды. При подаче тактовых импульсов с генератора импульсов на вход счетчика происходит последовательное переключение между выходами микросхемы.

Светодиоды зажигаются в строгой последовательности от 1 до 10 и поэтому получается эффект бегущих огней. Скорость переключения светодиодов регулируется за счет изменения частоты задающего генератора импульсов подстроечным резистором P1. Напряжение питания светодиодов устанавливается подбором сопротивления резистора R1. Схема питается напряжением от 5 до 15 вольт

Так же обратите внимание на нумерацию светодиодов на схеме. Если вы хотите, чтобы светодиоды зажигались один за другим, то разместите их по порядку указанном на схеме

На этом рисунке изображена печатная плата бегущих светодиодных огней на двух микросхемах.

Печатная плата бегущих светодиодных огней на двух микросхемах своими руками

Детали устройства легко помещаются на печатной плате размером 65х45 мм. Микросхемы для удобства я установил в DIP панельки, стоят копейки, в случае замены микросхемы не надо ничего паять.

Светодиоды с платой соединяются проводами. На каждый канал микросхемы можно подключить не более трех светодиодов. В своей самоделке решил поставить по два светодиода на каждый канал и разместить светодиоды один на против другого таким образом, чтобы получился круговой эффект вращения из двух точек. Вы можете размещать светодиоды в любой последовательности, создавать фигуры, вариантов много, фантазируйте…

Хочу заострить ваше внимание на том, что если будете ставить разноцветные светодиоды. На один канал можно ставить светодиоды, только одного цвета

Все потому, что у разноцветных светодиодов разное сопротивление и поэтому будет светиться только, тот у которого меньшее сопротивление. Конечно можно это дело исправить, если заменить резистор R1 перемычкой, а на каждый светодиод поставить отдельный резистор. Тогда все светодиоды будут светиться, как надо.

Моей задачей было собрать автономное, карманное устройство, которое будет служить световым дополнением к музыкальному «Бумбоксу», поэтому светодиоды и плату с батарейкой, аккуратно разместил в пластиковом корпусе от электромагнитного реле. Светодиоды залил термо клеем. Таким образом приклеил печатную плату. Поставил выключатель и один диод IN4007 для защиты устройства от переполюсовки.

Получилось симпатичное карманное устройство, которое можно взять с собой и наслаждаться бегущими по кругу светодиодными огоньками.

А, что делать если хочется подключить большую нагрузку, например светодиодные ленты? Тогда придется немного усовершенствовать схему. На каждый канал надо поставить транзисторный ключ.

В данной схеме хорошо работают практически любые транзисторы структуры n-p-n например: BD139, TIP41C, MJE13006, MJE13007, MJE13008, MJE13009, КТ815, КТ805, КТ819 и другие аналогичные подберите в зависимости от требуемой нагрузки. Все транзисторы надо закрепить на радиаторе, коллекторы транзисторов по схеме соединяются вместе, поэтому изолировать от радиатора не надо. Резисторы R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 подключите к выходам микросхемы. Питание схемы возьмите от общего источника питания.

Радиодетали для сборки бегущих огней на светодиодах

  • Микросхема NE555
  • Микросхема CD4017 или CD4022
  • Подстроечный резистор P1 на 50К
  • Резистор R1 1К, R2 22К
  • Конденсатор С1 220 мкФ 25В, С2 10 мкФ 25В
  • Светодиоды с напряжением питания от 2 до 12В

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать бегущие огни на светодиодах

Простая схема бегущих светодиодных огней

Компоненты для этого проекта

2 х 2N2222A (NPN Транзистор) 2 x 22 мкФ — 50 В конденсатор (поляризованный) Резистор 2 x 46 кОм (1/4 Вт) Яркий белый светодиод 6 х 8 мм 12 В блок питания

Принцип работы

Из принципиальной схемы ясно, что проект основан на простом Astable Multivibrator. При включении цепи один транзистор будет включен (в режиме насыщения), а другой будет выключен (в режиме отсечки).

Предполагая, что Т1 включен, а Т2 выключен, конденсатор C2 будет заряжаться через последовательные светодиоды. Поскольку светодиоды подключены на пути тока, они загорятся.

В течение этого времени транзистор Т2 выключен из-за разрядного конденсатора С1 (поскольку отрицательная пластина подключена к базе Q2). После постоянной времени C1R1 конденсатор C1 полностью разряжается и начинает заряжаться через R1.

Направление зарядки обратное. Когда конденсатор заряжается, он создает достаточное напряжение (0,7 В) для включения транзистора Т2. В это время конденсатор C2 начинает разряжаться через Q2.

Когда пластина конденсатора C2, которая подключена к базе транзистора Т1, становится отрицательной, транзистор Т1 выключается, и этот набор светодиодов выключается.

Теперь конденсатор C1 начинает заряжаться от соответствующих последовательных светодиодов (через базу Т2). Так как этот набор светодиодов подключен в текущем тракте, они будут включены.

Теперь конденсатор С2 разряжается и после полной разрядки начинает заряжаться через R2. Когда заряд накапливается в конденсаторе C2, когда напряжение достигает 0,7 В, он включит транзистор Т1. С этого момента процесс повторяется, как и раньше. Соответственно создается эффект бегущих огней.

Переводчик

Мы в соц.сетях:

Коротко о сайте:

Мастер Винтик. Всё своими руками!

– это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы. На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.

или через форму.Программы, схемы и литература – всё БЕСПЛАТНО!Если сайт понравился, добавьте в избранное (нажмите Ctrl + D)

, а также можете подписаться на RSS новости и всегда получать новые статьи по ленте. Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ! Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!

Микроконтроллер ATtiny2313 для бегущих огней

Данное устройство относится к серии AVR микроконтроллеров бренда Atmel. Именно под его управлением чаще всего делают бегущую световую ленту, поскольку эксплуатационные характеристики модели достаточно высокие. Микроконтроллеры просты в программировании, многофункциональны и поддерживают реализацию разных электронных устройств.

ATtiny2313 сделан по простой схеме, где порт для вывода и ввода имеет идентичное значение. Выбрать программу (одну из 12) на таком микроконтроллере очень легко, ведь он не перегружен лишними опциями. Модель выпускается в двух корпусах – SOIC и PDIP, причем каждый вариант обладает идентичными характеристиками:

  • 8-битные общие регистры в количестве 32 штук;
  • возможности 120 операций за один тактовый цикл;
  • flash-память внутри системы на 2 кБ с поддержкой 10 тысяч циклов стирания и записи;
  • внутрисистемная EEPROM на 128 байт с поддержкой 100 тысяч циклов;
  • 128 байт встроенной оперативки;
  • 4 ШИМ-канала;
  • счетчик-таймер на 8 и 16 бит;
  • встроенный генератор;
  • удобный для разных целей интерфейс и другие функции.

Микроконтроллер имеет два вида в соответствии с энергопараметрами:

  • классическая модель ATtiny2313 обладает напряжением от 2,7 до 5,5 В и силой тока до 300 мкА на частоте 1 МГц в режиме активности;
  • вариант ATtiny2313А (4313) обладает характеристиками в 1,8-5,5 В и 190 мкА при той же частоте.

В режиме ожидания устройство имеет энергопотребление не больше 1 мкА.

Как уже было указано, память микроконтроллера оснащена 11 комбинациями световых схем, а возможность выбора всех комбинаций светодиодов последовательно – это и есть 12 программа.

Микроконтроллер ATtiny2313 для бегущих огней

Данное устройство относится к серии AVR микроконтроллеров бренда Atmel. Именно под его управлением чаще всего делают бегущую световую ленту, поскольку эксплуатационные характеристики модели достаточно высокие. Микроконтроллеры просты в программировании, многофункциональны и поддерживают реализацию разных электронных устройств.

ATtiny2313 сделан по простой схеме, где порт для вывода и ввода имеет идентичное значение. Выбрать программу (одну из 12) на таком микроконтроллере очень легко, ведь он не перегружен лишними опциями. Модель выпускается в двух корпусах – SOIC и PDIP, причем каждый вариант обладает идентичными характеристиками:

  • 8-битные общие регистры в количестве 32 штук;
  • возможности 120 операций за один тактовый цикл;
  • flash-память внутри системы на 2 кБ с поддержкой 10 тысяч циклов стирания и записи;
  • внутрисистемная EEPROM на 128 байт с поддержкой 100 тысяч циклов;
  • 128 байт встроенной оперативки;
  • 4 ШИМ-канала;
  • счетчик-таймер на 8 и 16 бит;
  • встроенный генератор;
  • удобный для разных целей интерфейс и другие функции.

Микроконтроллер имеет два вида в соответствии с энергопараметрами:

  • классическая модель ATtiny2313 обладает напряжением от 2,7 до 5,5 В и силой тока до 300 мкА на частоте 1 МГц в режиме активности;
  • вариант ATtiny2313А (4313) обладает характеристиками в 1,8-5,5 В и 190 мкА при той же частоте.

В режиме ожидания устройство имеет энергопотребление не больше 1 мкА.

Как уже было указано, память микроконтроллера оснащена 11 комбинациями световых схем, а возможность выбора всех комбинаций светодиодов последовательно – это и есть 12 программа.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: