Pic-микроконтроллеры, где могут пригодиться радиолюбителю?

Atmel START

Atmel START представляет собой онлайн-инструмент для конфигурирования и настройки проектов встраиваемого программного обеспечения при помощи графического интерфейса. Atmel START основан на последнем поколении Advanced Software Framework и дает возможность разработчику выбирать и настраивать программные компоненты, драйверы и промежуточное ПО, а также подбирать примеры проектов, специально адаптированных под потребности создаваемого решения. При работе в Atmel START пользователь может просматривать зависимости между программными компонентами, предотвращая тем самым конфликты и аппаратные ограничения. В случае возникновения конфликта Atmel START автоматически предложит решения, подходящие для данной конкретной конфигурации.

Начиная работу с Atmel START, пользователь может создать новый проект или начать работу с уже существующим примером. После завершения конфигурирования программного обеспечения пользователь может загрузить сгенерированный проект и открыть его в IDE, установленной на персональном компьютере, например, Microchip Studio 7, IAR Embedded Workbench, Keil µVision (Рисунок 9).

Рисунок 9. Процесс работы с онлайн-инструментом Atmel START.

Atmel START предоставляет пользователю следующие преимущества:

  • Дает возможность найти и протестировать примеры для своего решения;
  • Позволяет сконфигурировать микроконтроллер, настроить драйверы и промежуточное ПО;
  • Позволяет настроить параметры таймеров и тактирование;
  • Дает возможность подготовить проект для работы на современной IDE;
  • И многое другое.

Отдельно следует отметить TrustZone Manager – графический интерфейс для настройки параметров безопасной (защищенной) зоны, также интегрированный в Atmel START.

Технология Arm TrustZone обеспечивает аппаратное разделение так называемых защищенных и незащищенных зон. Данное разделение позволяет обезопасить критически важные функции или конфиденциальную информацию, хранящуюся в защищенной зоне, от доступа из компонентов, расположенных вовне. Технология TrustZone, в частности, доступна при работе с микроконтроллерами SAM L11.

Компиляторы MPLAB XC

Компиляторы MPLAB XC – это, пожалуй, то, без чего сложно представить работу основных программных средств компании, таких как MPLAB X и MPLAB Xpress.

Подобрать подходящий компилятор для конкретного проекта достаточно просто, все зависит от выбранного микроконтроллера (Таблица 2).

Таблица 2. Компиляторы Microchip
Компилятор Поддерживаемые микроконтроллеры
MPLAB XC8 8-битные микроконтроллеры PIC и AVR
MPLAB XC16 16-битные микроконтроллеры PIC, цифровые
сигнальные контроллеры (DSC) dsPIC
MPLAB XC32/32++ 32-битные микроконтроллеры PIC и SAM.

Компиляторы MPLAB XC обеспечивают высокую степень оптимизации кода и могут сократить конечный размер файла до 70%. Бесплатные версии MPLAB XC предлагают пользователю следующие уровни оптимизации:

  • O0 – код находится в исходном состоянии,
  • O1 – позволяет провести оптимизацию кода без влияния на процесс отладки,
  • O2 – позволяет провести сбалансированную оптимизацию скорости и размера кода.

Если стандартных уровней оптимизации оказывается недостаточно, разработчик может приобрести расширенную PRO-лицензию и получить доступ к следующим возможностям

  • Os – позволяет произвести максимальное сокращение размера кода;
  • O3 – позволяет провести лучшую оптимизацию с точки зрения скорости выполнения и работы кода;
  • mpa (процедурная абстракция) – еще больше уменьшает размер кода

Лицензия PRO, как правило, применяется в проектах, требующих максимального сокращения кода и максимальной производительности. Для ознакомления с возможностями MPLAB XC PRO пользователь может получить бесплатную 60-дневную пробную версию лицензии и продлить или отказаться от нее по истечении пробного периода.

MPLAB XC PRO поддерживает несколько типов лицензии:

  • Лицензия для рабочей станции;
  • Лицензия по подписке;
  • Лицензия сайта;
  • Лицензия сервера;
  • Лицензия виртуальной машины;
  • Лицензия на электронном ключе.

Дополнительно пользователю также доступна подписка High Priority Access (HPA), которая может быть активирована бесплатно на 12 месяцев при приобретении MPLAB XC PRO. HPA дает пользователю приоритет в получении технической поддержки по запросам, связанным с компилятором.

Помимо лицензии MPLAB XC PRO, компания Microchip также предлагает своим клиентам версии компиляторов для приложений, критических к отказам. Эти версии сертифицированы немецкой экспертной организацией TÜV SÜD в соответствии с современными стандартами безопасности ISO 26262, IEC 61508, IEC 62304 и IEC 60730.

Какую литературу читать о микроконтроллерах AVR для начинающих?

Для обучения молодых специалистов написаны горы литературы, давайте рассмотрим некоторые из них:

Евстифеев А.В. «Микроконтроллеры AVR семейства Mega». В книге подробно рассмотрена архитектура микроконтроллера. Описано назначение всех регистров и таймеров, а также их режимы работы. Изучена работа интерфейсов связи с внешним миром SPI и т. д. Система команд раскрыта для понимания радиолюбителю среднего уровня

Материал книги «Микроконтроллеры avr семейства mega: руководство пользователя» поможет изучить структуру чипа и назначение каждого из его узлов, что, безусловно, важно для любого программиста микроконтроллеров.
Белов А.В. – «Микроконтроллеры AVR в радиолюбительской практике»

Как видно из названия, эта книга, в большей степени, посвящена практической стороне работы с микроконтроллерами. Подробно рассмотрен ставший классическим микроконтроллер ATiny2313, а также многие схемы для сборки.
Хартов В.Я. «Микроконтроллеры AVR. Практикум для начинающих». Поможет разобраться в AVR studio 4, а также стартовом наборе STK Вы научитесь работать с последовательными и параллельными интерфейсами, такими как UART, I2C и SPI. Книга «Микроконтроллеры AVR. Практикум для начинающих» написана преподавателем МГТУ им. Н.Э.Баумана и используется там для изучения этой темы.

Изучение этого семейства микроконтроллеров помогло начать работать и разрабатывать проекты многим любителям электроники. Стоит начинать именно с популярного семейства, чтобы всегда иметь доступ к морю информации.

Среди радиолюбителей начального уровня есть только один конкурент AVR – PIC микроконтроллеры.

Работа с USB портом

Начнем с того, что для программирования микроконтроллера нужно использовать последовательный порт, однако на современных компьютерах COM порт часто отсутствует. Как подключить микроконтроллер к такому компьютеру? Если использовать преобразователи USB-UART, эта проблема решается очень легко. Простейший преобразователь вы можете собрать на микросхемах FT232 и CH340, а его схема представлена ниже.

Такой преобразователь размещен на платах Arduino UNO и Aduino Nano.

Некоторые микроконтроллеры AVR имеют встроенный (аппаратный) USB:

  • ATmega8U2;
  • ATmega16U2;
  • ATmega32U2.

Такое решение нашло применение для реализации связи компьютера и Arduino mega2560 по USB, в которой микроконтроллер «понимает» только UART.

УСТРОЙСТВО СВЕТОВЫХ ЭФФЕКТОВ

Рейтинг:  5 / 5

Подробности
Категория: схемы на ATtiny
Опубликовано: 08.04.2017 11:19
Просмотров: 4095

В статье представлен вариант устройства световых эффектов на базе микроконтроллера AVR. Устройство позволяет реализовать 16 различных световых эффектов с заданием скорости переключения индикаторов в гирляндах. Устройства, создающие световые эффекты, пользуются неизменной популярностью на различных массовых мероприятиях. Применение в них микроконтроллеров позволяет значительно увеличить их функциональные возможности по сравнению с аналогичными устройствами, выполненными на цифровых логических микросхемах. Количество реализуемых разнообразных световых эффектов ограничивается лишь фантазией разработчика и памятью программ микроконтроллера. Причем, что число исполняемых функций, а так же параметры и количество световых эффектов устройства можно изменить, под каждый конкретный случай, изменив фактически только программное обеспечение, как правило, при минимальных доработках в аппаратной части. Это очень удобно, когда для изменения сценария световой иллюминации достаточно «на ходу» изменить только программное обеспечение. При желании это можно сделать даже во время мероприятия. Для этого нужно только перепрограммировать микроконтроллер или заменить его с новой зашитой программой.

1000 и одна микроконтроллерная схема. Выпуск 2 (+CD)

1000 и одна микроконтроллерная схема. Книга является второй частью и логическим продолжением авторского издания «1000 и одна микроконтроллерная схема. Вып.1», вышедшего в в 2010 г. В книге представлена коллекция, более чем из 1000 электрических схем по применению микроконтроллеров в любительской практике. Подробно освещается подсистема цифрового вывода сигналов (подключение световых, звуковых, механических и других исполнительных устройств), а также схемотехника комбинированных узлов ввода/вывода и устройств сопряжения с компьютерами через интерфейсы RS-232, LPT, PS/2, USB, Ethernet. Все электрические схемы систематизированы по разделам и снабжены пояснениями о назначении элементов. Книга будет полезна разработчикам электронной аппаратуры, радиолюбителям (в том числе начинающим), студентам, а также всем неспециалистам в области электроники, самостоятельно осваивающим микроконтроллеры.

Интегрированная среда разработки MPLAB X

MPLAB X IDE представляет собой среду, которая объединяет в себе весь необходимый набор инструментов для настройки, разработки, отладки и оценки возможностей микроконтроллеров и микропроцессоров, производимых компанией Microchip (Рисунок 2). Среда построена на основе IDE NetBeans с открытым исходным кодом от Apache Software Foundation и распространяется бесплатно.

Рисунок 2. Стартовое окно MPLAB X IDE.

MPLAB X IDE обладает широкими возможностями для написания исходного кода программы, ее дальнейшей отладки и оптимизации проекта. Столь обширный функционал обеспечен благодаря наличию в MPLAB X IDE следующих модулей и возможностей (Рисунок 3):

  • Менеджер проектов (Project Manager) – служит для управления файлами рабочих групп;
  • Редактор кода (Editor) – позволяет редактировать и создавать программный код проекта;
  • Поддержка программаторов/отладчиков MPLAB ICD и MPLAB REAL ICE;
  • Симулятор MPLAB X Simulator, пошагово моделирующий работу программы;
  • Поддержка компиляторов MPLAB XC (XC8, XC16 и XC32) – преобразуют исходный код на языках С, С++, ассемблер в машинный;
  • И так далее.
Рисунок 3. Составляющие среды MPLAB X IDE.

MPLAB X предлагает пользователю широкий функционал, способный помочь быстро отладить проект и минимизировать время разработки. Данная IDE может рассчитать время исполнения операций (инструмент Stopwatch), открыть доступ к переменным и специальным регистрам контроллера, объединить разрозненные файлы в один проект и многое другое. В папке, где размещается MPLAB X, по пути emplatecode лежат файлы-шаблоны для проектов, с которых удобно начать работу.

Кроме того, возможности MPLAB X IDE можно расширить с помощью множества плагинов как от компании Microchip или NetBeans, так и от сторонних производителей.

Примерами доступных для MPLAB X IDE плагинов могут служить:

  • Монитор данных и контроллер интерфейсов (DMCI). DMCI позволяет разработчику изучать или изменять содержимое переменных без необходимости остановки приложения во время сеанса отладки;
  • Конфигуратор кода Microchip (MCС) – графический плагин для инициализации системы, который также предоставляет драйверы для работы с компонентами;
  • Графический интерфейс пользователя SMPS Buck (SMPSGUI) – представляет собой плагин, упрощающий работу и настройку гибридных ШИМ-контроллеров, в частности – MCP19110/11/18/19;
  • Конфигуратор дисплея Graphics Display Designer (GDD) – инструмент разработки интерфейсов, который позволяет быстро и легко создавать графический интерфейс пользователя для приложений на основе 16- или 32-разрядных микроконтроллеров PIC;
  • Программный пакет Proteus VSM Viewer, позволяющий виртуально собрать схему электронного устройства и симулировать его работу, выявляя ошибки, допущенные на стадии проектирования и трассировки;
  • Модуль отладки Segger J-Link, позволяющий работать с устройствами JTAG;
  • И так далее.

Полный список доступных и установленных плагинов можно найти в соответствующем разделе программы.

Следует отметить, что помимо положений, описанных в руководстве Microchip Developer Help, которое уже упоминалось ранее, компания Microchip предоставляет своим клиентам специальный обучающий курс , в котором приведено подробное описание среды. По окончании курса пользователь получит основные представления о принципах работы с MPLAB X IDE, узнает, как открыть и построить проект, усвоит основные принципы отладки и загрузки кода в микроконтроллер и многое другое.

Программирование микроконтроллеров для начинающих

Начинать осваивать программирование микроконтроллеров для начинающих рекомендуется с изучения архитектуры и разновидностей. Промышленность выпускает следующие виды МК:

  • встраиваемые;
  • 8-, 16- и 32-разрядные;
  • цифровые сигнальные процессоры.

Производителям микроконтроллеров приходится постоянно балансировать между габаритами, мощностью и ценой изделий. Поэтому до сих пор в ходу 8-разрядные модели. Они обладают довольно низкой производительностью, но во многих случаях данный факт является преимуществом, т.к. позволяет экономить энергоресурсы. Цифровые сигнальные процессоры способны обрабатывать в реальном времени большие потоки данных. Однако их стоимость намного выше.

Количество используемых кодов операций может быть неодинаковым. Поэтому применяются системы команд RISC и CISC. Первая считается сокращенной и выполняется за один такт генератора. Это позволяет упростить аппаратную реализацию ЦП, повысить производительность микросхемы. CISC — сложная система, способная значительно увеличить эффективность устройства.

Изучить программирование микроконтроллеров для начинающих невозможно без понимания алгоритмов. На ЦП микросхемы команды подаются в определенном порядке. Причем их структура должна восприниматься процессором однозначно. Поэтому сначала программист составляет последовательность выполнения команд. Заставить ЦП немедленно остановить программу можно при помощи вызова прерывания. Для этого используют внешние сигналы либо встроенные периферийные устройства.

Виды микроконтроллеров PIC и их архитектура

Пожалуй, среди начинающих очень распространены микроконтроллеры пик младших моделей, а именно семейств:

  • Pic10;
  • Pic12;
  • Pic16.

Эти микроконтроллеры 8-битные, при этом различают две архитектуры:

  1. Baseline с 10-битными инcтрукциями с 35-ю ассемблерными командами.
  2. Mid-range с 14-битными инструкциями и 35 или 49 команд на языке ассемблера в зависимости от конкретной модели.

В разработках радиолюбителей очень часто встречается модель 16f628. Конфигурация этого pic-микроконтроллера следующая, в нём есть:

  • встроенный тактовый генератор может быть настроен на частоту 4 или 8 МГц;
  • 18 ножек – портов, из которых 16 может использоваться для ввода-вывода данных, 2 задействованы под питание;
  • возможность использовать кварцевый резонатор для работы на тактовых частотах до 20 МГц (тогда задействуют еще 2 ноги для него);
  • буква F в маркировке говорит о памяти типа Flash, объёмом на 2048 слов;
  • гарвардская архитектура, с 14-битными инструкциями, всего их 35 штук;
  • длина машинного цикла 4 такта (1 действие выполняется за 4 такта кварцевого резонатор или внутреннего генератора);
  • 224 байта ОЗУ;
  • 128 байт EEPROM;
  • USART – последовательный порт;
  • внутренний источник опорного напряжения;
  • питается от 3.3 до 5 В.

PIC16 имеют низкую цену и достаточно развитую аналоговую периферию, что и обеспечивает их популярность. При этом модели могут выпускаться в корпусах с количеством ножек от 18 до 40. Это позволяет делать более сложные системы, чем возможно на вышеприведенном примере.

Существуют и более мощные модели, например, 16-битные:

  1. PIC24x
  2. DsPIC30/33F – для цифровой обработки сигналов.

Они способны выполнять 16 MIPS (миллионов итераций в секунду), что обеспечивает весьма высокое быстродействие вашей системы при 2 при двухтактном машинном цикле, такая скорость обеспечивается частотой в 32 МГц. 40 MIPS достигается при 80 МГц соответственно.

32-битные микроконтроллеры PIC32MX имеют большую производительность и превосходящий объём памяти, если сравнивать с 16-битными моделями, и работают на частоте в 80 МГц.

Microchip Studio (Atmel Studio 7)

Все, кто хоть раз имел дело с разработкой программного кода для микроконтроллеров, наверняка слышали о среде Atmel Studio. После того как Microchip завершила сделку по покупке компании Atmel в 2016 году, все права на среду разработки (как и на сами микроконтроллеры) перешли к новому правообладателю, а сама IDP стала носить гордое название Microchip Studio.

Microchip Studio представляет собой интегрированную платформу разработки (IDP) для создания и отладки приложений на базе микроконтроллеров AVR и SAM. Atmel Studio влилась в широкое портфолио средств разработки от Microchip и предлагает пользователям простой в использовании функционал для написания, сборки и отладки приложений, написанных на языках C/C++ или ассемблере (Рисунок 8).

Рисунок 8. Пример работы с проектом в среде Microchip Studio.

Несмотря на то, что среда получила новое название и слегка измененный внешний вид, пользователи по-прежнему могут свободно использовать документацию, курсы и видеоуроки, созданные для Atmel Studio. То же касается и аппаратной части, в частности программаторов AVR и SAM.

Microchip Studio устанавливается вместе с компиляторами avr-gcc, avr32-gcc и arm-none-eabi-gcc, в дополнение к которым был также добавлен MPLAB XC8. Его расширенная версия MPLAB XC8 PRO включает в себя улучшенную степень оптимизации, уменьшенный размер кода и успешно конкурирует с более дорогими представленными на рынке решениями.

Ключевые особенности среды Microchip Studio:

  • Поддержка более 500 устройств AVR и SAM;
  • Встроенный компилятор MPLAB XC8;
  • Более 1600 примеров проектов с исходными кодами, доступными через Advanced Software Framework (ASF);
  • Расширение возможностей IDE через Microchip Gallery – онлайн-магазин инструментов разработки и встроенного программного обеспечения от Microchip и сторонних производителей;
  • QTouch Composer – набор инструментов для разработки и настройки емкостных сенсорных устройств, проверки производительности системы, мониторинга энергопотребления с возможностью работы в режиме реального времени;
  • Wireless Composer набор инструментов для разработки и настройки беспроводных устройств;
  • Расширенные функции отладки, включая степпинг и точки останова, поддержку трассировки (SAM3 и SAM4), статистическое профилирование кода, отслеживание/мониторинг прерываний, отслеживание значений переменных в режиме реального времени и многое другое;
  • Встроенный редактор кода, менеджер проектов, виртуальный симулятор, модуль внутрисхемной отладки и интерфейс командной строки;
  • Возможность написания кода и моделирования прерываний, работы периферийных устройств и других внешних воздействий для конкретной модели контроллера;
  • Возможность создания дизайна приложений с низким энергопотреблением;
  • Отслеживание данных о потребляемой мощности во время отладки программы при помощи Power Debugger.

Еще одной особенностью является возможность импорта в Microchip Studio проектов Arduino, что позволяет значительно упростить и ускорить процесс перехода от создания прототипа к организации полноценного производства. Microchip Studio поддерживает работу с Arduino Zero и платами расширения Arduino Shield.

Программные средства разработки Microchip

Microchip предлагает своим клиентам широкий перечень программных решений, позволяющих значительно упростить процесс разработки и отладки программного кода при работе с компонентами, входящими в экосистему компании.

На текущий момент пользователям доступны следующие решения:

  • MPLAB X IDE – полнофункциональная интегрированная среда разработки (IDE), предназначенная для разработки кода для микроконтроллеров PIC, цифровых сигнальных контроллеров (DSC) dsPIC, а также микроконтроллеров AVR и SAM. Среда построена на основе IDE NetBeans с открытым исходным кодом от Apache Software Foundation.
     
  • MPLAB Xpress – представляет собой бесплатную онлайн-среду разработки, которая не требует установки или настройки системы. MPLAB Xpress имеет более ограниченный функционал по сравнению с MPLAB X IDE, однако поддерживает ее наиболее популярные функции, такие как конфигуратор кода MPLAB.
     
  • Конфигуратор кода MPLAB (MCC) – бесплатный графический плагин для инициализации системы, который также предоставляет драйверы для работы с компонентами. MCC может использоваться для настройки широкого спектра периферийных устройств и поддерживает работу с микроконтроллерами AVR и PIC.
     
  • MPLAB Harmony – гибкий фреймворк, включающий в себя программные модули, которые выступают в роли строительных блоков при создании приложения. Используя MPLAB Harmony, разработчик может включить в свой проект библиотеки и программные драйверы как компании Microchip, так и сторонних производителей. MPLAB Harmony поддерживает работу с 32-битными микроконтроллерами PIC и SAM.
     
  • Компиляторы MPLAB XC – комплексное решение для компиляции разрабатываемого программного кода. MPLAB XC поддерживает 8-битные PIC и AVR в версии MPLAB XC8, 16-битные PIC и dsPIC DSC в MPLAB XC16 и 32-битные PIC и SAM в MPLAB XC32. Для компиляторов MPLAB XC доступны два вида лицензии: бесплатная – включает базовые функции оптимизации и PRO – ориентирована на проекты, требующие максимальной оптимизации по скорости и размеру бинарного файла.
     
  • Microchip Studio (Atmel Studio 7) – интегрированная среда разработки (IDE) для написания кода и отладки микроконтроллеров AVR и SAM.
  • Atmel START – бесплатный онлайн-инструмент для графического конфигурирования микроконтроллеров для встраиваемых приложений на базе микроконтроллеров AVR и SAM.

Как несложно заметить, те или иные программные средства подходят только для определенного типа контроллеров. В Таблице 1 приведены данные по возможности работы с программным обеспечением в зависимости от выбранного микроконтроллера или микропроцессора.

Таблица 1. Данные по возможности работы программного обеспечения в зависимости от выбранного микроконтроллера
или микропроцессора
  Микро-
контроллеры
AVR
Микро-
контроллеры
PIC
Цифровые
контроллеры
сигналов
dsPIC
Микро-
контроллеры
SAM
Семейства
микро-
контроллеров
CEC/MEC
Микро-
процессоры
IDE MPLAB X IDE + + + + + +
MPLAB Xpress + + +
Microchip Studio + +
Компиляторы MPLAB XC + + + + + +
AVR GCC +
ARM GCC + +

Конфигураторы
кода

MPLAB Code
Configurator
+ + +
MPLAB
Harmony
+, только для
32-битных
версий
+ +
Atmel Start + +
Средства програм-
мирования
для производства
MPLAB IPE + + + +
MPLAB PM3 + +

Для упрощения процесса работы, компания Microchip объединила информацию по своим продуктам в раздел Microchip Developer Help [], в котором подробно описаны все тонкости работы с приведенными выше программными пакетами, а также приведены ссылки на продукты, дополнительные ресурсы, видеоуроки, курсы и документацию.

Стоит также учитывать возможность работы программного обеспечения на той или иной операционной системе. Например, инструменты разработки MPLAB совместимы с операционными системами Windows, Linux и macOS, а Microchip Studio (Atmel Studio 7) способна работать только под Windows.

Разберем описанные выше программные решения более подробно.

Сферы применения различных Tiny, Mega

Четко описать сферу применения микроконтроллера нельзя, ведь она безгранична, однако можно классифицировать следующим образом:

  1. Tiny AVR – самые простые в техническом плане. В них мало памяти и выводов для подключения сигналов, цена соответствующая. Однако это идеальное решение для простейших проектов, начиная от автоматики управления осветительными приборами салона автомобиля, до осциллографических пробников для ремонта электроники своими руками. Они также используются в Arduino-совместимом проекте – Digispark. Это самая маленькая версия ардуины от стороннего производителя; выполнена в формате USB-флешки.
  2. Семейство MEGA долго оставалось основным у продвинутых радиолюбителей, они мощнее и имеют больший, чем в Tiny, объём памяти и количество выводов. Это позволяет реализовывать сложные проекты, однако семейство очень широко для краткого описания. Именно они использовались в первых платах Arduino, актуальные платы оснащены, в основном, ATMEGA

Выход любого МК без дополнительных усилителей потянет светодиоды или светодиодную матрицу в качестве индикаторов, например.

Выводы

Кроме упомянутых выше производителей есть много других: Intel, Renesas Electronics, Texas Instruments и прочие. Но в сообществе электронщиков-любителей они не прижились, хоть и активно используются в промышленности.

Новичкам я рекомендую AVR в виде Arduino: по нему много информации на русском, а порог вхождения невелик. Но засиживаться на них не стоит, а то так и будешь до конца дней собирать и пересобирать этот конструктор.

После Arduino стоит перейти на STM. Для простеньких проектов бери восьмибитные чипы, для более сложных — 32-битные, и будет тебе счастье. И помни, что микроконтроллер — это уже не процессор, но еще не компьютер.

Статьи на сайте о ESP32

  • Программирование на ESP32
  • Создание сниффера на ESP32

Статьи на сайте об STM32 и проектах на его основе

  • Как реализовать шифрование для самодельного гаджета
  • Заводим и разгоняем оперативную память на STM32 и Arduino
  • Как собрать свой мобильник и почему это проще, чем кажется
  • Собираем программно определяемый радиоприемник своими руками
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: