Lm358

5.6 Электрические характеристики для LM2904

В указанном диапазоне температур, VCC = 5 В (если не указано иное)

Параметр Условия(1) TA(2) LM2904 Ед. изм.
MIN TYP(3) MAX
VIO Входное напряжение компенсации смещения нуля VCC = от 5 В до MAX,
VIC = VICR(min),
VO = 1.4 В
Без A суффикса в маркировке 25°C 3 7 мВ
Весь диапазон 10
С А суффиксом в маркировке 25°C 1 2
Весь диапазон 4
αVIO Средний температурный коэффициент входного напряжения смещения нуля Весь диапазон 7 мкВ/°C
IIO Входной ток компенсации смещения нуля VO = 1.4 В Без V суффикса в маркировке 25°C 2 50 нА
Весь диапазон 300
С V суффиксом в маркировке 25°C 2 50
Весь диапазон 150
αIIO Средний температурный коэффициент входного тока смещения нуля Весь диапазон 10 пA/°C
IIB Входной ток смещения VO = 1.4 В 25°C -20 -250 нA
Весь диапазон -500
VICR Диапазон входного синфазного напряжения VCC = от 5 В до MAX 25°C от 0 до
VCC — 1.5
В
Весь диапазон от 0 до
VCC — 2
VOH Высокий уровень выходного напряжения RL ≥ 10 кОм 25°C VCC — 1.5 В
VCC = MAX,
Без V суффикса
RL = 2 кОм Весь диапазон 22
RL ≥ 10 кОм Весь диапазон 23 24
VCC = MAX
С V суффиксом
RL = 2 кОм Весь диапазон 26
RL ≥ 10 кОм Весь диапазон 27 28
VOL Низкий уровень выходного напряжения RL ≤ 10 кОм Весь диапазон 5 20 мВ
AVD Большой сигнал усиления дифференциального напряжения VCC = 15 В,
VO = от 1 В до 11 В,
RL ≥ 2 кОм
25°C 25 100 В/мВ
Весь диапазон 15
CMRR Коэффициент ослабления синфазного сигнала VCC = от 5 В до MAX,
VIC = VICR(min)
Без V суффикса 25°C 50 80 dB
С V суффиксом 25°C 65 80
kSVR Коэффициент подавления помех по питанию
(ΔVCC /ΔVIO)
VCC = от 5 В до MAX 25°C 65 100 dB
VO1/ VO2 Переходное затухание f = от 1 кГц до 20 кГц 25°C 120 dB
IO Выходной ток VCC = 15 В,
VID = 1 В,
VO = 0
Источник 25°C -20 -30 мA
Весь диапазон -10
VCC = 15 В,
VID = -1 В,
VO = 15 В
Приемник 25°C 10 20
Весь диапазон 5
VID = -1 В, VO = 200 мВ Без V суффикса 25°C 30 мкA
С V суффиксом 25°C 12 40
IOS Ток короткого замыкания на выходе VCC около 5 В, VO = 0, GND около ?5 V 25°C ±40 ±60 мA
ICC Потребляемый ток
(четыре усилителя)
VO = 2.5 В, Без нагрузки Весь диапазон 0.7 1.2 мA
VCC = MAX, VO = 0.5 VCC, Без нагрузки Весь диапазон 1 2

(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.

(2) Весь диапазон это температуры от -55°C до 125°C для LM158, от -25°C до 85°C для LM258, и от 0°C до 70°C для LM358, и от -40°C до 125°C для LM2904.

(3) Все типичные значения для температуры TA = 25°C

Особенности операционного усилителя

Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:

  1. Крайне низкая цена элемента.
  2. При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
  3. Может питаться как от однополярного источника, так и от двухполярного.
  4. Питание может происходить от источника, напряжение которого 3…32В. Это позволяет использовать практически любой блок питания.
  5. На выходе сигнал нарастает со скоростью 0,6 В/мкс.
  6. Максимальный потребляемый ток не превышает 0,7 мА.
  7. Напряжение смещения на входе не более 0,2 мВ.

Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители

DataSheet

Микросхема LM386, представляет собой усилитель мощности, который можно использовать в устройствах с низким напряжением питания. Например при питании от батареи. По умолчанию её внутренняя схема ограничивает усиление по напряжению в районе 20. Но подключая внешние резистор и конденсатор можно изменять усиление от 20 до 200, а выходное напряжение автоматически устанавливается равным половине напряжения питания. Потребление электроэнергии в холостом режиме составляет всего 24 милливатта, при питании от 6 В.

Особенности

  • Возможность работы от батарей
  • Минимум подключаемых наружных компонентов
  • Широкий диапазон питания: от 4 до 12 В или от 5 до 18 В
  • Низкий потребляемый ток: 4 мА
  • Усиление по напряжению от 20 до 200
  • Вход относительно земли
  • Самоустанавливающееся выходное напряжение
  • Низкий коэффициент искажений: 0.2% (при AV = 20, VS = 6 В, RL = 8 Ом, PO = 125 мВт, f = 1 кГц)

Примениение

  • Усилители радиопремников
  • Усилители портативных проигрывателей
  • Домофоны
  • Звуковые системы тв-приемников
  • Линейные приводы
  • Ультразвуковые приводы
  • Небольшие сервоприводы
  • Преобразователи


Рис. 1 Внутренняя принципиальная схема LM386 На Рис. 1 показана внутренняя принципиальная схема LM386. Транзисторы Q1 и Q2 образуют дифференциальный усилитель. В нем оба выхода соединены с общим проводом резисторами R1 и R2 номиналом 50 кОм. Выход дифференциального усилителя (транзистор Q3) подключен к входу усилителя с общим эмиттером(транзистор Q7). Сигнал с коллектора транзистора Q7 напрямую по дается на выход ИС через усилитель мощности класса АБ, имеющий единичное усиление и выполненный на транзисторах Q8-Q9-Q10. которые для минимизации внутреннего падения напряжения и для получения максимальной выходной мощности не снабжены схемой защиты от перегрузки.


Рис. 2 Расположение выводов LM386

Электрические характеристики

Параметр Условия Мин. Тип. Макс. Ед. изм.
Рабочее напряжение питания (VS) для LM386N-1, -3, LM386M-1, LM386MM-1 4 12 В
Рабочее напряжение питания (VS) для LM386N-4 5 18 В
Потребляемый ток (IQ) VS = 6 В, VIN = 0 4 8 мА
Выходная мощность (POUT) для LM386N-1, LM386M-1, LM386MM-1 VS = 6 В, RL = 8 Ом, THD = 10% 250 325 мВт
Выходная мощность (POUT) для LM386N-3 VS = 9 В, RL = 8 Ом, THD = 10% 500 700 мВт
Выходная мощность (POUT) для LM386N-4 VS = 16 В, RL = 32 Ом, THD = 10% 700 1000 мВт
Усиление по напряжению (AV) VS = 6 В, f = 1 кГц 26 дБ
при 10 мкФ подключенных между выводами 1 и 8 46 дБ
Полоса пропускания (BW) VS = 6 В, выводы 1 и 8 отключены 300 кГц
Коэффициент нелинейных искажений (THD) VS = 6 В, RL = 8 Ом, POUT = 125 мВт f = 1 кГц, выводы 1 и 8 отключены 0.2 %
Ослабление помех по питанию (PSRR) VS = 6 В, f = 1 кГц, CBYPASS = 10 мкФ 50 дБ
Входное сопротивление (RIN) VS = 6 В, выводы 1 и 8 отключены 50 кОм
Входной ток смещения (IBIAS) 250 нА

Схемы включения


Схема усилителя на LM386 с минимальным количеством, подключаемых элементов и коэффициентом усиления 20


Схема усилителя на LM386 с коэффициентом усиления 200


Усилитель с коэффициентом усиления 50


Схема генератора с низким коэффициентом искажений на мосте Вина


Схема с дополнительным усилением низких частот


Зависимость коэффициента усиления от частоты для схемы с дополнительным усиление НЧ


Схема генератора Меандра


Усилитель мощности для АМ приемника Примечание:

  • Ферритовое кольцо Ferroxcube К5—001—001/3Б с 3 витков провода.
  • R1C1 должны быть в пределах диапазона входных сигналов.
  • Все компоненты должны быть расположены как можно ближе к ИС.


Купить LM386 на алиэкспресс или купить с кэшбэком! Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Лабораторный блок питания на LM358N — Блоки питания (лабораторные) — Источники питания

Основные технические характеристикиВходное напряжение, В ……26…29Выходное напряжение, В……1…20Ток срабатывания защиты, А………………….0.03…2

      Схема устройствапоказана на рисунке. Регулируемый стабилизатор напряжения собран на ОУ DA1.1. На его неинвертирующий вход (вывод 3) с движка переменного резистора R2 поступает образцовое напряжение, стабильность которого обеспечивает стабилитрон VD1, а на инвертирующий вход (вывод 2) — напряжение отрицательной обратной связи (ООС) с эмиттера транзистора VT2 через делитель напряжения R11R7 ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Перемещая движок переменного резистора R2, можно регулировать выходное напряжение.

      Узел защиты от перегрузки по току собран на ОУ DA1.2, который включен как компаратор, сравнивающий напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13, на инвертирующий — образцовое напряжение, стабильность которого обеспечивает диод VD2, выполняющий функцию стабистора с напряжением стабилизации около 0,6 В. Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.

      Если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 увеличится почти до напряжения питания. Через резистор R9 потечет ток, который включит светодиод HL1 и откроет транзистор VT1. Диод VD3 открывается и через резистор R8 замыкает цепь положительной обратной связи (ПОС). Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в результате чего выходное напряжение уменьшится практически до нуля, поскольку регулирующий транзистор VT2 закроется и отключит нагрузку. Несмотря на то что напряжение на датчике тока нагрузки упадет до нуля, благодаря действию ПОС нагрузка останется отключенной, что показывает светящийся индикатор HL1. Повторно включить нагрузку можно кратковременным отключением питания или нажатием на кнопку SB1. Диод VD4 защищает эмиттерный переход транзистора VT2 от обратного напряжения с конденсатора С5 при отключении нагрузки, а также обеспечивает разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.

      Детали. Транзистор КТ315А (VT1) можно заменить на КТ315Б—КТ315Е. Транзистор VT2 — любой из серий КТ827, КТ829. Стабилитрон (VD1) может быть любым с напряжением стабилизации У 3 В при токе 3…8 мА. Диоды КД521В (VD2—VD4) могут быть другими из этой серии или КД522Б Конденсаторы СЗ, С4 — любые пленочные или керамические. Оксидные конденсаторы: С1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше указанного на схеме. Постоянные резисторы — МЛТ, переменные — СПЗ-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом. Кнопка (SB1) — П2К без фиксации или аналогичная.

      Налаживание устройства начинают с измерения напряжения питания на выводах конденсатора С1, которое, с учетом пульсаций, должно находиться в пределах, указанных на схеме. После этого перемещают движок переменного резистора R2 в верхнее по схеме положение и, измеряя максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. Затем подключают к выходу эквивалент нагрузки, например, такой, как описан в статье И. Нечаева «Универсальный эквивалент нагрузки» в «Радио», 2005, № 1, с. 35. Измеряют минимальный и максимальный ток срабатывания защиты. Чтобы снизить минимальный уровень срабатывания защиты, необходимо уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия

Схема неинвертирующего усилителя

Описание схемы:

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Лабораторный блок питания на lm358n CAVR.ru

Основные технические характеристикиВходное напряжение, В ……26…29Выходное напряжение, В……1…20Ток срабатывания защиты, А………………….0.03…2

      Схема устройствапоказана на рисунке. Регулируемый стабилизатор напряжения собран на ОУ DA1.1. На его неинвертирующий вход (вывод 3) с движка переменного резистора R2 поступает образцовое напряжение, стабильность которого обеспечивает стабилитрон VD1, а на инвертирующий вход (вывод 2) — напряжение отрицательной обратной связи (ООС) с эмиттера транзистора VT2 через делитель напряжения R11R7 ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Перемещая движок переменного резистора R2, можно регулировать выходное напряжение.

      Узел защиты от перегрузки по току собран на ОУ DA1.2, который включен как компаратор, сравнивающий напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13, на инвертирующий — образцовое напряжение, стабильность которого обеспечивает диод VD2, выполняющий функцию стабистора с напряжением стабилизации около 0,6 В. Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.

      Если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 увеличится почти до напряжения питания. Через резистор R9 потечет ток, который включит светодиод HL1 и откроет транзистор VT1. Диод VD3 открывается и через резистор R8 замыкает цепь положительной обратной связи (ПОС). Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в результате чего выходное напряжение уменьшится практически до нуля, поскольку регулирующий транзистор VT2 закроется и отключит нагрузку. Несмотря на то что напряжение на датчике тока нагрузки упадет до нуля, благодаря действию ПОС нагрузка останется отключенной, что показывает светящийся индикатор HL1. Повторно включить нагрузку можно кратковременным отключением питания или нажатием на кнопку SB1. Диод VD4 защищает эмиттерный переход транзистора VT2 от обратного напряжения с конденсатора С5 при отключении нагрузки, а также обеспечивает разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.

      Детали. Транзистор КТ315А (VT1) можно заменить на КТ315Б—КТ315Е. Транзистор VT2 — любой из серий КТ827, КТ829. Стабилитрон (VD1) может быть любым с напряжением стабилизации У 3 В при токе 3…8 мА. Диоды КД521В (VD2—VD4) могут быть другими из этой серии или КД522Б Конденсаторы СЗ, С4 — любые пленочные или керамические. Оксидные конденсаторы: С1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше указанного на схеме. Постоянные резисторы — МЛТ, переменные — СПЗ-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом. Кнопка (SB1) — П2К без фиксации или аналогичная.

      Налаживание устройства начинают с измерения напряжения питания на выводах конденсатора С1, которое, с учетом пульсаций, должно находиться в пределах, указанных на схеме. После этого перемещают движок переменного резистора R2 в верхнее по схеме положение и, измеряя максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. Затем подключают к выходу эквивалент нагрузки, например, такой, как описан в статье И. Нечаева «Универсальный эквивалент нагрузки» в «Радио», 2005, № 1, с. 35. Измеряют минимальный и максимальный ток срабатывания защиты. Чтобы снизить минимальный уровень срабатывания защиты, необходимо уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия

Какой транзистор выбрать

При использовании TIP31 и TIP32 транзисторы моего прототипа работали без теплоотводов в диапазоне напряжений питания от 9 В до 21 В. Эти комплементарные транзисторы в корпусах TO-220 при естественном воздушном охлаждении допускают рассеяние мощности до 2 Вт, в то время как в моей схеме при нагрузке 8 Ом и питании 21 В на них выделяется максимум 1.3 В. Технически тут все нормально, однако транзисторы настолько горячи, что до них невозможно дотронуться. Поэтому, все же было бы неплохо воспользоваться небольшими навесными радиаторами с пружинными зажимами. При 8-омном динамике и напряжениях питания менее 18 В теплоотводы не нужны. Максимальная мощность, отдаваемая моим прототипом, аппроксимируется следующим выражением, полученным на основании эмпирических данных:

Используя эту формулу, вы можете определить, что мой прототип при питании напряжением 9 В отдает в нагрузку 8 Ом респектабельные 350 мВт. Это совсем немало для небольших радио проектов. На другом полюсе – при напряжении питания 21 В и нагрузке 8 Ом – формула предсказывает мощность 2.5 Вт, и это ровно то, что я измерил в точке начала ограничения. В этом тесте я использовал синусоидальный сигнал частотой 1 кГц.

Как ни странно, похоже, что своей устойчивостью схема обязана низкой граничной частоте силовых транзисторов. Я пробовал использовать более быстрые транзисторы (44H11 и 45H11), но получил возбуждение вблизи 700 кГц, несмотря на то, что SPICE моделирование предсказывало противоположное! Подозреваю, что более высокочастотные транзисторы просто не успевали внести дополнительный фазовый сдвиг вблизи частоты единичного усиления ОУ LM358 (1 МГц). (Это не более чем мое предположение). Выбор намного более быстрых транзисторов, таких как 2N2219 и 2N2905, возвращал схеме устойчивость, скорее всего потому, что присущий LM358 спад уже наступал к тому времени, когда транзисторы начинали сдвигать фазу. В этом случае результаты находились в согласии со SPICE. SPICE предупреждает, что совсем медленные транзисторы, такие как старинные 2N3055, будут еще более неустойчивыми. Одним словом, нужно экспериментировать!

При напряжении питания Vcc ниже 12 В рассеиваемая транзистором мощность становится меньше 350 мВт, и многие малосигнальные приборы будут хорошо работать без теплоотвода.

С какими проблемами я столкнулся

В этой схеме много усиления собрано в небольшом объеме и, что еще хуже, есть много тока, идущего через выходной каскад. Операционные усилители довольно хорошо подавляют обратную связь, создаваемую помехами по шинам питания и земли, но, тем не менее, эта обратная связь может создавать проблемы устойчивости. Провода от источника питания подключайте к схеме вблизи выходных транзисторов. Провод «земли» припаяйте возле точки соединения трех конденсаторов 10 мкФ и резистора 330 кОм

Обратите также внимание на входной фильтр 1 кОм/10 мкФ. Мощности, потребляемой усилителем, достаточно для небольшого проседания Vcc, и небольшая часть возникающей в связи с этим помехи, проникая на вход, приводит к генерации или, в моем случае, к загадочному падению входного импеданса

Небольшой RC фильтр эту обратную связь устраняет. Снизить усиление схемы вы можете, уменьшив сопротивления резисторов 33 кОм, или ограничившись только одним входным каскадом. Дополнительное усиление можно будет получить с помощью внешней схемы.

Помимо этого, вы можете столкнуться с проблемами устойчивости, связанными с выбором ОУ и транзисторов, о которых говорилось выше, поэтому было бы неплохо воспользоваться осциллографом и убедиться, что усилитель работает правильно.

Стабилизированный источник питания не является абсолютно необходимым для этой схемы, но, как минимум, нужно использовать конденсатор очень большой емкости, такой, как показанный на схеме конденсатор 2200 мкФ. Трехвыводной стабилизатор обеспечит некоторую дополнительную степень защиты транзисторов в случае короткого замыкания выхода на землю.

Регулировка коэффициента усиления

В прошлой конструкции имеется один недостаток – нет возможности произвести регулировку коэффициента усиления. Причина – сложность реализации, ведь нужно использовать сразу два переменных резистора. Но если вдруг возникла необходимость проводить регулировку коэффициента, можно использовать схему конструкции на трех операционниках:

Здесь корректировка происходит при помощи переменного резистора R2. Обязательно нужно учесть, чтобы были выполнены такие равенства:

  1. R3=R1.
  2. R4=R5=R6=R7.

В этом случае k=(1+2*R1/R2).

Напряжение на выходе усилителя U(out)=(1+2*R1/R2)*(Uin1-Uin2).

Описание и применение операционного усилителя LM358. Схемы включения, аналог, datasheet

Микросхема LM358 в одном корпусе содержит два независимых маломощных операционных усилителя с высоким коэффициентом усиления и частотной компенсацией. Отличается низким потреблением тока. Особенность данного усилителя – возможность работать в схемах с однополярным питанием от 3 до 32 вольт. Выход имеет защиту от короткого замыкания.

Описание  операционного усилителя LM358

Область применения — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.

Технические характеристики LM358

  • Однополярное питание: от 3 В до 32 В.
  • Двухполярное питание: ± 1,5 до ± 16 В.
  • Ток потребления: 0,7 мА.
  • Синфазное входное напряжение: 3 мВ.
  • Дифференциальное входное напряжение: 32 В.
  • Синфазный входной ток: 20 нА.
  • Дифференциальный входной ток: 2 нА.
  • Дифференциальный коэффициент усиления по напряжению: 100 дБ.
  • Размах выходного напряжения: от 0 В до VCC — 1,5 В.
  • Коэффициент гармонических искажений: 0,02%.
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс.
  • Частота единичного усиления (с температурной компенсацией): 1,0 МГц.
  • Максимальная рассеиваемая мощность: 830 мВт.
  • Диапазон рабочих температур: 0…70 гр.С.

Габаритные размеры и назначения выводов LM358 (LM358N)

Аналоги LM358

Ниже приведен список зарубежных и отечественных аналогов операционного усилителя LM358:

  • GL358
  • NE532
  • OP221
  • OP290
  • OP295
  • TA75358P
  • UPC358C
  • AN6561
  • CA358E
  • HA17904
  • КР1040УД1 (отечественный аналог)
  • КР1053УД2 (отечественный аналог)
  • КР1401УД5 (отечественный аналог)

Примеры применения (схемы включения) усилителя LM358

 Компаратор с гистерезисом

Допустим, что потенциал, поступающий на инвертирующий вход, плавно возрастает. При достижении его уровня чуть выше опорного (Vh -Vref), на выходе компаратора возникнет высокий логический уровень. Если после этого входной потенциал начнет медленно снижаться, то выход компаратора переключится на низкий логический  уровень при значении немного ниже опорного (Vref – Vl). В данном примере разница между (Vh -Vref) и (Vref – Vl)  будет значение гистерезиса.

Генератор синусоидального сигнала с мостом Вина

Мостовой генератор Вина (Wien bridge oscillator) — является одним из видов электронного генератора, который генерирует волны синусоидальной формы. Он может генерировать широкий спектр частот. Генератор основан на мостовой схеме, изначально разработанной Максом Виеном в 1891 году. Класический генератор Вина состоит из четырех резисторов и двух конденсаторов. Генератор можно также рассматривать в качестве прямого усилителя в сочетании с полосовым фильтром, который обеспечивает положительную обратную связь.

 Дифференциальный усилитель на LM358

Назначение данной схемы — усиление разности двух входящих сигналов, при этом каждый из них умножается на определенную постоянную величину.

Дифференциальный усилитель — это хорошо известная электрическая схема, применяемая для усиления разности напряжений 2-х сигналов, поступающих на его входы. В теоретической модели дифференциального усилителя величина выходного сигнала не зависит от величины каждого отдельного входного сигнала, а зависит строго от их разности. 

Данный функциональный генератор вырабатывает сигналы треугольной и прямоугольной формы.

Генератор прямоугольных импульсов на LM358

В качестве примера использования  приведем схему микрофонного усилителя на LM358:

Скачать datasheet LM358 (808,0 Kb, скачано: 9 581)

Применение

Область применения LM358 — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.

Типичное применение операционного усилителя в качестве инвертирующего усилителя. Этот усилитель принимает положительное напряжение на входе и преобразует его в отрицательное той же величины. Таким же образом он преобразует отрицательное напряжение в положительное.

Применение — схема включения

Напряжение питания должно быть больше чем диапазоны входного и выходного напряжения сигнала. Например если будет усиливаться сигнал от ±0.5 В до ±1.8 В, напряжения питания ±12 В будет достаточно.

Требуемый коэффициент усиления для инвертирующего усилителя рассчитывается по формулам (1) и (2):

Av=Vout/Vin (1)

Например Av=1.8/-0.5=-3.6 (2)

После того как определен коэффициент усиления, выбираются значения RI или RF. Выбирать значение сопротивления желательно в кОм, так как схема будет использовать токи в мА. Это гарантирует, что не будет потребляться слишком много тока. Для этого примера выберем RI=10 кОм, что дает RF=36 кОм. RF рассчитывается по формуле (3): Av=-RF/RI.

Входное и выходное напряжения на инвертирующем усилителе

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: