Проверка исправности биполярного транзистора мультиметром

Назначение и принцип работы

Основное назначение транзисторов, это увеличение электрических сигналов. Эти радиодетали, являются полупроводниковыми элементами. В их конструкцию включен полупроводниковый материал, который и дает эффект усиления сигнала.

Принцип работы этих устройств кроется в слабой проводимости электрического тока. Поэтому материал из которого состоят эти элементы и называется полупроводником. Часто при создании транзисторов используют кремний или германий. Если к этим материалам добавить вещество с большим числом свободных электронов, то кремний становится проводником с отрицательным зарядом. Такие устройства приобретают тип «N».

Если к кремнию добавить вещество с меньшим количеством электронов, но с большим количеством атомов, то такой материал тоже становится проводником, но наделяется положительным зарядом. Такие транзисторы входят в тип «P».

Таким образом, за счет изменения структуры вещества, получают полупроводниковый элемент с положительным или отрицательным усилением электрического сигнала.

Транзистор стал переходным этапом от ламповых радиодеталей. Теперь электроника стала намного компактнее, ее производство экономичнее, а приборы более надежнее и дешевле.

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Назначение и функции

Мультиметр предназначен для измерения трёх основных параметров электрической цепи: напряжения, силы тока и сопротивления. К этому базовому набору функций обычно добавляют режимы проверки целостности проводника и исправности полупроводниковых приборов. Более сложные и дорогие устройства способны определять ёмкость конденсаторов, индуктивность катушек, частоту сигнала и даже температуру исследуемого электронного компонента. По принципу работы мультиметры делят на две группы:

  1. Аналоговые – устаревший вид, основанный на магнитоэлектрическом амперметре, дополненном резисторами и шунтами для измерения напряжения и сопротивления. Аналоговые тестеры относительно дёшевы, однако склонны давать большую погрешность из-за малого входного сопротивления. К другим недостаткам аналоговой системы относится чувствительность к полярности подключения и нелинейная шкала.

  2. Цифровые – более точные и современные приборы. В бытовых моделях среднего ценового сегмента допустимая погрешность не превышает 1%, для профессиональных моделей — возможное отклонение лежит в пределах 0,1%. «Сердце» цифрового мультиметра – электронный блок с логическими микросхемами, счётчиком сигналов, декодером и драйвером дисплея. Информация отображается на жидкокристаллическом энергозависимом экране.

Погрешность бытовых цифровых тестеров не превышает 1%

В зависимости от назначения и специфики использования, мультиметры могут быть выполнены в различных форм-факторах и пользоваться разными источниками тока. Наибольшее распространение получили:

  1. Портативные мультиметры со щупами – самые популярные как в быту, так и в профессиональной деятельности. Состоят из основного блока, оснащённого батареями или аккумулятором, к которому подключаются гибкие проводники-щупы. Для измерения того или иного электрического показателя щупы соединяют с электронным компонентом или участком цепи, а результат считывают с дисплея прибора.

  2. Токоизмерительные клещи – в таком устройстве контактные площадки щупов сблокированы на подпружиненных губках. Пользователь разводит их в стороны, нажимая на специальную клавишу, а затем защёлкивает на том участке цепи, который нужно измерить. Зачастую токоизмерительные клещи допускают возможность подключения классических гибких щупов.

  3. Стационарные мультиметры питаются от бытового источника переменного тока, отличаются высокой точностью и широким функционалом, могут работать со сложными радиоэлектронными компонентами. Основная сфера применения – проведение измерений при разработке, макетировании, ремонте и обслуживании электронных приборов.

  4. Осциллографы-мультиметры или скопметры – сочетают в себе сразу два измерительных прибора. Могут быть как портативными, так и стационарными. Цена на такие устройства очень высока, что делает их сугубо профессиональным инженерным инструментом.

Как можно заметить, функции мультиметра могут варьироваться в достаточно широких пределах и зависят от вида, форм-фактора, ценовой категории прибора. Так, мультиметр для домашнего использования должен обеспечивать:

  • Определение целостности проводника;
  • Поиск «нуля» и «фазы» в бытовой электросети;
  • Измерение напряжения переменного тока в бытовой электросети;
  • Измерение напряжения маломощных источников постоянного тока (батарейки, аккумуляторы);
  • Определение базовых показателей исправности электронных приборов – силы тока, сопротивления.

Бытовое применение мультиметра обычно сводится к прозвонке проводов, проверке исправности ламп накаливания, определению остаточного напряжения в батарейках.

В быту мультиметры используются для прозвонки проводов, проверки батареек и электрических схем

В то же время, требования, предъявляемые к профессиональным моделям, куда строже. Они определяются отдельно для каждого частного случая. Среди главных особенностей продвинутых тестеров стоит отметить:

  • Возможность комплексной проверки диодов, транзисторов и других полупроводниковых приборов;
  • Определение ёмкости и внутреннего сопротивления конденсаторов;
  • Определение ёмкости аккумуляторных батарей;
  • Измерение специфичных характеристик – индуктивности, частоты сигнала, температуры;
  • Способность работать с большим напряжением и силой тока;
  • Высокая точность измерений;
  • Надёжность и долговечность прибора.

Важно помнить, что мультиметр – достаточно сложный электрический прибор, работать с которым следует грамотно и осторожно

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии – позволяют применять IGBT в цепях с высокими напряжениями и большими токами.

Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.

Читать также: Настройка пульверизатора для покраски

Названия выводов IGBT: затвор, эмиттер, коллектор.

Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.

Как проверить IGBT транзистор мультиметром

Проверяется IGBT FGH40N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.

Затем произвести следующие действия:

1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.

2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.

3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.

4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.

5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.

Для более надежной проверки IGBT транзистора можно собрать следующую схему:

При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.

В этом видео показано как проверить IGBT мультиметром:

Это сравнительно новый тип транзисторов, управление которых осуществляется не электрическим током, как в биполярных транзисторах, а электрическим напряжением (полем), о чём и говорит английская аббревиатура MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor или в переводе металл-окисел-полупроводник полевой транзистор), в русской транскрипции этот тип обозначается как МОП (металл-окисел-полупроводник) или МДП (металл-диэлектрик-полупроводник).

Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор (вывод, аналогичный базе у биполярных транзисторов), также у MOSFET имеются выводы сток и исток, аналоги коллектора и эмиттера у биполярных.

Существует и ещё более современный тип IGBT, в русской транскрипции БТИЗ (биполярный транзистор с изолированным затвором), гибридный тип, где МОП (МДП) транзистор с переходом n-типа управляет базой биполярного, и это позволяет использовать преимущества обоих типов: быстродействие, почти как у полевых, и большой электрический ток через биполярный при очень малом падении напряжения на нём при открытом затворе, при очень большом напряжении пробоя и большом входном сопротивлении.

Полевики находят широкое применение в современной жизни, а если говорить о чисто бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерного железа и всевозможных электронных гаджетов до других, более простых, бытовых приборов — стиральных, посудомоечных машин, миксеров, кофемолок, пылесосов, различных осветителей и другого вспомогательного оборудования. Само собой, что-то из всего этого разнообразия иногда выходит из строя и появляется необходимость выявления конкретной неисправности. Сама распространённость этого вида деталей ставит вопрос:

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.


Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.


Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h21Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
Переведите потенциометр в положение максимального сопротивления

Плавно убавляйте его, следите за свечением диода и ростом тока.

Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов. После выхода диода на номинальный ток яркость свечения почти не изменяется

После выхода диода на номинальный ток яркость свечения почти не изменяется.

Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.

Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Особенности процедуры

Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:

  1. К собранной самодельной конструкции подключается полупроводниковый элемент.
  2. Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
  3. Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
  4. К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
  5. Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
  6. Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
  7. При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.

Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: