Эксперимент 14. собираем схему с плавно мигающим светодиодом

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Причины мигания светодиодов

При неправильном подключении, эффект моргания начинает проявляться спустя несколько месяцев использования светодиодной лампы. И причина этого явления – не только отсутствие стабилизации тока. Повышение температуры кристалла выше 85 °C наносит ему непоправимый вред. Наглядным примером служат многочисленные жалобы водителей, у которых светодиодные лампы установлены в непосредственной близости от обычных ламп головного света. Нить накала сильно разогревает окружающее пространство, а иногда даже оплавляют пластиковый корпус светодиодной лампочки. Стоит отметить, что зимой такие симптомы могут не проявляться, так как холодная погода прекрасно способствует охлаждению. А вот в летнюю жару температура внутри фары легко перешагнёт критическую отметку в 100 °C. И тогда не помогут не фирменные светодиодные лампочки, ни дорогие стабилизаторы.

Вторая возможная причина мерцания – использование в авто светодиодных ламп со встроенным стабилизатором низкого качества. Встроенный стабилизатор в таких лампах не ограничивает ток на должном уровне. Замер параметров дешевых светодиодных лампочек китайского производства показывает плавный рост тока (и яркости) после включения до значения, больше номинального. Таким нечестным путём производители рекламируют высокую светоотдачу своего товара, не беспокоясь о непродолжительном сроке службы. Третью причину неприятного мигания рассмотрим на примере светодиодов, предназначенных для монтажа в габаритах и салоне автомобиля. От них не требуется максимальной светоотдачи, а значит, подключить их можно через обычный резистор. Только рассчитывать его нужно не для 12 В, а для 14,5 В, а также узнать из справочника ток для используемого типа светодиодов.

Часто при тюнинге автомобиля применяются светодиодные ленты, рассчитанные на напряжение 12 В. При подключении их напрямую к аккумулятору, неизбежно придётся стать свидетелем постепенной потери яркости, мерцания с окончательным перегоранием изделия спустя некоторое время. Избежать неприятной ситуации со светодиодными лентами поможет, как минимум, дополнительный резистор, рассчитанный на напряжение 14,5 В.

Помимо уже написанного о причинах моргания светодиодов можно добавить что стабилизация не всегда решит вопрос с уже моргающей светодиодной фарой. Скорее всего сам сегмент (светодиод) уже нуждается в замене, но и здесь есть подводные камни. В фарах автомобиля светодиод включается в линейку собратьев, т.е. работает группа светодиодов, такие линейки могут содержать более одного светодиода, а включение таких линеек, как и их количество, может разным. Поэтому при замене светодиода в таких линейках, результат скорее всего не обрадует, а скорее огорчит, ведь вновь установленный светодиод будет светить ярче своих собратьев.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Профессиональный цифровой осциллограф
Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Как правильно подключать светодиоды

Параллельное подключение

Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.

Проще всего определить совместимость диодов при помощи низковольтного либо регулируемого источника питания. Ориентироваться можно по «напряжению розжига», когда кристалл начинает лишь чуть светиться. При разбросе «стартового» напряжения в 0,3-0,5 В параллельное соединение без токоограничивающего резистора недопустимо.

Последовательное подключение

Расчёт сопротивления для цепи из нескольких диодов: R = (Uпит — N * Uсд) / I * 0.75

Максимальное количество последовательных диодов: N = (Uпит * 0,75) / Uсд

При включении нескольких последовательных цепочек LED, для каждой цепи желательно рассчитать свой резистор.

Как включить светодиод в сеть переменного тока

Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.

При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.

Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.

Схема подключения в сеть переменного тока на рисунке справа.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона

Блок питания большинства низковольтных бытовых приборов

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Другие виды LED

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

Источник

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания. Ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники. Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Будет интересно Что такое терморезистор?

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный – 1,8…2В;
  • зеленый и желтый – 2…2,4В;
  • белые и синие – 3…3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем – 3В. Производим расчет напряжения на гасящем резисторе – Uгрез = Uпит – Uсвет = 5В – 3В = 2В. Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт). Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

  • Uгрез = Uпит – Uсвет = 5В – 2В = 3В.
  • R = U / I = 3В / 0,015А = 200 Ом.
  • P = U * I = 3В * 0,015А = 0,045 Вт.

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр. Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Расчет гасящего резистора для светодиода.

Правильное включение светодиода

Важнейший параметр светодиода – номинальный ток потребления, то есть ток, при котором производитель гарантирует оптимальную светоотдачу в течение заявленного срока жизни изделия. В идеале функцию токового ограничителя должен выполнять стабилизатор тока, встроенный в осветительный прибор. Однако зачастую этого самого стабилизатора как раз-то и нет. В крупногабаритных приборах еще можно исправить ситуацию. А как быть с маломощными светодиодными лампами небольшого размера, которые часто ставят в габаритные огни, приборную панель или различные малогабаритные приборы салона автомобиля? Корпус этих приборов слишком мал даже для установки примитивного стабилизатора тока. Для решения этой проблемы разработаны специальные выносные стабилизаторы, но по разным причинам большинство автолюбителей почему-то обходят стороной такие изделия. Возможно, одни не знают о возможных последствиях, другие избегают дополнительных расходов, третьи слушают продавцов, для которых главное – реализовать товар.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов. Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему. Как видно на рисунке, характеристики имеют нелинейный характер.

Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз. Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

RLED

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

LED

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Мигающие светодиоды

Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

Будет интересно Что такое фоторезистор?

При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.


Пример правильного подключения резистора

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Расчёт резистора для светодиода

Расчёт резистора для светодиода – очень важный момент перед подключением светодиода к источнику питания. Ведь от этого зависит то, как будет работать светодиод. Если резистор будет иметь слишком маленькое сопротивление, то светодиод может выйти из строя (перегореть), а если сопротивление будет слишком велико, то светодиод будет излучать свет слабо. Расчёт резистора для светодиода производится по следующей формуле:

  • R = (VS – VL) / I
  • VS – напряжение источника питания (В).
  • VL – напряжение питания светодиода (обычно 2 вольта и 4 вольта для голубых и белых светодиодов).
  • I – ток светодиода (например 10 мА = 0.01 А или 20 мА = 0.02 А)

Убедитесь, что выбранный вами электрический ток меньше максимального, на который рассчитан светодиод. Переведите эту величину из миллиампер в амперы. Таким образом результатом вычисления будет величина сопротивления резистора в омах (Ом). Если рассчитанная величина сопротивления резистора не совпадает со стандартным номиналом резисторов, необходимо выбрать ближайший больший номинал.

Впрочем, Вы можете изначально захотеть выбрать несколько большее сопротивление, для экономии электричества например. Но надо помнить, что излучение светодиода в этом случае будет менее ярким. Если напряжение источника питания = 9 Вольт и у Вас красный светодиод (VL = 2V), требуемый ток I = 20 мА = 0.02A, R = (9V – 2V) / 0.02A = 350 Ом. Необходимо выбрать резистор сопротивлением 390 Ом (ближайшее большее значение).


Расчёт резистора для светодиода.

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае), I = ток через резистор. Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Будет интересно Как отличается параллельное и последовательное соединение резисторов?

Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником. V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются). Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!

Что делать для того чтобы светодиодные фары не моргали

Чтобы мерцание светодиодных ламп в авто не было неприятным сюрпризом, нужно соблюдать два несложных правила:не размещать их вблизи сильно греющихся ламп головного света; не эксплуатировать светодиодные лампы без правильно подобранного стабилизатора.

В качестве ограничителя тока можно использовать недорогой LED контроллер с подходящим значением выходного тока и мощности. Благодаря малым размерам и герметичному корпусу, такое устройство будет эффективнее резистора.

При соблюдении этих не сложных правил и незамысловатых приборов ваша диодная лампа или дневные ходовые огни будут служить долго и без нареканий.

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd, которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%

, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: