Как защитить блок питания от кз и перегрузок

Варианты управления: ручное и программное

Только ручное управление характерно для бюджетных серий, очень критичных к цене, например для эконом-серий ITECH IT6700 и Tektronix PWS2000. Но большинство хороших лабораторных блоков питания средней и высокой ценовой категории поддерживают как ручное, так и программное управление.

Обычно, программное управление используют в двух случаях. Первый — это применение готовой компьютерной программы, которая поставляется вместе с прибором. На большом экране компьютера наглядно видно все настройки и параметры прибора, а это очень удобно. Кроме того, блок питания можно установить в производственном помещении, а управлять удалённо, со своего рабочего места. Это может быть полезно, если производственное помещение шумное, холодное или очень тёплое, содержит опасные для человека условия и т.д. При необходимости, даже можно организовать управление прибором через оптоволокно, что исключит любые электрические связи с оператором.

На этом рисунке показан скриншот главного окна программы IT9000, которая управляет работой лабораторного источника питания переменного напряжения и тока серии IT7300. На одном экране размещаются все органы управления, а также подробная индикация текущего состояния прибора.

Главное окно программы удалённого управления прибором серии IT7300.
Нажмите на фотографию для увеличения изображения.

Второй случай, когда применяется программное управление — это включение лабораторных блоков питания в состав автоматизированных измерительных комплексов. Раньше для этой цели чаще всего использовали интерфейс IEEE-488.2 (его ещё называют GPIB, а в ГОСТ он назывался КОП — Канал Общего Пользования). Но в последние годы в системах промышленной автоматизации активно набирают популярность интерфейсы Ethernet (LAN) и USB, а устаревшие интерфейсы RS-232 и RS-485 используются всё реже. Для того, чтобы управлять прибором, придётся создавать собственные программы. Команды управления подробно описываются в руководствах по программированию, которые есть для каждой серии. Пример руководства по программированию для лабораторных блоков питания серии ITECH IT6500 смотрите . На этой фотографии показана задняя панель современного блока питания ITECH IT6412, который стандартно оснащается тремя популярными интерфейсами: IEEE-488.2, Ethernet (LAN) и USB.

Три распространённых интерфейса программного управления приборами: IEEE-488.2, LAN (Ethernet) и USB.

Таблица потребления мощности компонентами значительно нагруженного ПК

Компоненты ПК +3,3 В +5,0 В +12,0 В Число Мощность
Жесткий диск IDE (массив
RAID)*
0.80 A 2.00 A 4 112.00
Процессор AMD Athlon
XP 2100+, 1.75 В
7.49 A 1 89.88
Модуль RAM (128 Мб
DDR-DIMM)
2.00 A 3 30.00
Видеокарта AGP (Nvidia
GeForce 4 Ti 4600)
6.00 A 2.00 A 1 29.80
Материнская плата с
встроенными устройствами
3.00 A 2.00 A 0.30 A 1 23.50
DVD-ROM 1.20 A 1.10 A 1 19.20
CD-RW 1.20 A 0.80 A 1 15.60
IEEE 1394 1.60 A 1 8.00
Устройства USB 0.50 A 2 5.00
Звук PCI 0.50 A 0.50 A 1 4.15
Флоппи-привод 0.80 A 1 4.00
PCI-LAN 0.40 A 0.4 0A 1 3.32
Системный вентилятор 0.25 A 1 3.00
Вентилятор процессора 0.25 A 1 3.00
Модем PCI 0.50 A 1 2.50
Клавиатура 0.25 A 1 1.25
Мышь 0.25 A 1 1.25
Общая потребляемая
мощность
355.45 Вт

* В момент старта винчестеры могут потреблять ток до 6 А.

Форма выходного сигнала

Главная функция лабораторного блока питания в режиме стабилизации напряжения (CV) — это формирование заданного постоянного напряжения и его точное поддержание, даже при изменяющемся токе нагрузки. Аналогично, в режиме стабилизации тока (CC) блок питания должен подавать в нагрузку заданный постоянный ток и обеспечивать его точное поддержание даже при изменяющемся сопротивлении нагрузки.

Но в современных лабораторных и производственных условиях часто появляется необходимость в изменении выходного напряжения по определённому закону. Поэтому, некоторые модели хороших лабораторных блоков питания обеспечивают такую возможность. Этот режим называется: «Режим изменения выходного напряжения по списку заданных значений». С его помощью можно изменять выходное напряжение по заданной программе, которая состоит из последовательности шагов. Для каждого шага задаётся уровень напряжения и его длительность. Этот режим позволяет испытывать оборудование, подавая на него неидеальные сигналы, максимально похожие на те, которые существуют в реальности: скачки и пульсации напряжения питания, кратковременные исчезновения напряжения, плавное нарастание и спад и т.д.

На этой фотографии показана одна из форм напряжения, которую легко можно реализовать с помощью режима изменения выходного напряжения по списку заданных значений (его также называют Режим Списка — List Mode). Фотография получена с помощью осциллографа, подключенного к клеммам блока питания IT6500.

Напряжение на выходе лабораторного блока питания изменяется по сложному закону.
Пример работы режима изменения выходного напряжения по списку заданных значений (List Mode).

Но не все задачи можно решить с помощью лабораторного блока питания постоянного тока, даже если в нём есть режим работы по списку. Есть задачи, где необходимо формирование чисто синусоидального напряжения, причём с уровнем сотни вольт или синусоидального тока с уровнем десятки ампер. Для подобных задач выпускаются специализированные источники переменного напряжения и тока, такие как однофазная серия ITECH IT7300 или трёхфазная серия ITECH IT7600.

При помощи таких приборов можно реализовывать много интересных решений, в основном в сфере проверки устойчивости оборудования при разных отклонениях в сети питания 220 В. В этом коротком видео, на примере модели IT7322, показано формирование переменного напряжения, амплитуда и частота которого изменяется по заданной программе. Форму выходного сигнала наблюдают с помощью осциллографа.

Формирование переменного напряжения с изменяющейся амплитудой и частотой.

Мощность

По полезной мощности, отдаваемой в нагрузку, все лабораторные блоки питания постоянного тока можно разделить на стандартные (до 700 Вт) и большой мощности (700 Вт и более). Такое деление не случайно. Модели стандартной и большой мощности довольно сильно отличаются по функциональным возможностям и области применения.

В моделях стандартной мощности максимальное напряжение обычно находится в диапазоне от 15 В до 150 В, а максимальный ток от 1 А до 25 А. Количество каналов: один, два или три. Есть как линейные, так и импульсные модели. Конструктивное исполнение: стандартный приборный корпус для размещения на лабораторном столе. Масса от 2 до 15 кг. Типичный пример: серия Tektronix PWS4000. В основном, возможности таких приборов нацелены на разработку и ремонт электронной аппаратуры, хотя область их применения значительно шире.

С другой стороны, модели большой мощности всегда одноканальные и импульсные. Модели до 3 кВт выпускаются в приборном или стоечном исполнении (типичный пример: серия ITECH IT6700H), а модели с мощностью 3 кВт и более мощные, монтируются только в промышленную стойку и отличаются значительной массой и габаритами. Например, масса модели на 18 кВт из серии ITECH
IT6000C составляет 40 кг.

Большая мощность выдвигает повышенные требования к конструкции: наличие «умных» вентиляторов охлаждения, полный набор защит (от перегрузки, перегрева, смены полярности и пр.), возможность параллельного включения нескольких блоков для наращивания выходной мощности, поддержка специальных форм выходных сигналов (например, автомобильных стандартов DIN40839 и ISO-16750-2).

Для этой категории приборов является обязательной поддержка удалённого программного управления через один из интерфейсов: Ethernet, IEEE-488.2 (GPIB), USB, RS-232, RS-485 или CAN, так как они часто используются в составе автоматизированных комплексов. Также, некоторые серии (например IT6000C), могут регулировать своё выходное сопротивление в диапазоне от нуля до нескольких Ом, что очень полезно при имитации работы аккумуляторов и солнечных панелей. Кроме того, некоторые мощные модели могут содержать встроенную электронную нагрузку, что позволяет им не только генерировать ток, но и потреблять его.

Лабораторные блоки питания большой мощности используются в автомобильной промышленности, в альтернативной энергетике, при гальванической обработке металлов и во многих других отраслях, где необходимо формировать напряжения до 2 250 Вольт и токи до 2 040 Ампер.

Характеристики всех лабораторных блоков питания, отсортированных по мере увеличения максимальной мощности, смотрите . А на этой фотографии Вы можете увидеть мощные выходные клеммы шестикиловаттной модели IT6533D, которая состоит из двух модулей по 3 кВт каждый, включенных параллельно. Равномерное распределение выходной мощности между модулями обеспечивается с помощью отдельной шины синхронизации System BUS (серый кабель слева).

Часть задней панели лабораторного блока питания ITECH IT6533D с максимальной мощностью 6 кВт.

Технические спецификации и результаты тестов, продолжение

Прозводитель Leadman Levicom Maxtron Seasonic TSP
Модель LP-6100 E WIN-400PS TOP-520P4 SS-400FS TSP-420 P4
Общий рейтинг Вполне ничего Удовл. Не годен Удовл. Удовл.
Технические спецификации/Результаты тестов
Фотография модели
Максимальная мощность
(Данные производителя/
Наши измерения)
500/426 Вт 420/433 Вт 520/446 Вт 400/419 Вт 420/497 Вт
-5 V/
-12 V
(Данные производителя)
0.3/0.8 A 0.8/0.5 A 0.8/1.0 A 0.5/0.8 A 0.5/0.8 A
+3.3 V/
+5 V/+2 V
(Данные производителя)
50/30/25 A 30/28/15 A 56/26/28 A 30/28/17 A 42/26/18 A
+5 VSB (A)
(Данные производителя)
2.0 A 2.0 A 12.5 A 2.0 A 2.0 A
Компенсация коэффициента
мощности
активная активная активная активная активная
Число вентиляторов/
регулировка вращения
2/активная 2/активная 2/активная, ручная
(3 позиции)
1/активная 3/manual
Поддержка питания 230
В
нет нет нет нет да, для любого стандарта
Входное напряжение/
установка напряжения
115 и 230 В/перекл. 115 и 230 В/перекл. от 195 до 250 В/автомат от 100 до 240 В/автомат от 195 до 250 В/автомат
Провода/
HDD разъемы/
FDD разъемы
2/6/2 2/6/2 3/9/2 3/7/2 3/10/2
Длина кабеля для
HDD и
FDD разъемов
95 см 74 см 95 см 74 см 89 см
Длина кабеля
ATX/ATX
12V/AUX
52/53/52 см 37/34/32 см 60/62/60 см 55/57/59 см 62/65/62 см
Подключение мониторинга
вентилятора/регулятора
да/да нет/нет нет/нет нет/нет нет/нет
Кабель питания/
Винты/
Инструкция
да/нет/нет да/нет/нет да/да/нет нет/нет/нет да/да/нет
Дополнительные детали Внешний вентилятор нет нет нет розетка питания для
любого стандарта

Защита от неправильного использования

Когда выбирают лабораторный блок питания, в первую очередь обращают внимание на цену и максимальное значение напряжения и тока

Но наличие качественной защиты — это тоже очень важно, так как позволяет защитить не только блок питания, но и подлюченное к нему оборудование. В этом разделе мы расскажем о типах защит, которыми оснащаются серийные лабораторные блоки питания и рассмотрим несколько сопутствующих моментов

В этом разделе мы расскажем о типах защит, которыми оснащаются серийные лабораторные блоки питания и рассмотрим несколько сопутствующих моментов.

Защита от перегрузки по току (сокращённо OCP — Over Current Protection) должна мгновенно срабатывать при превышении выходным током заданного значения, что может произойти, например, при коротком замыкании выходных клемм блока питания. Такой тип защиты есть в большинстве хороших моделей

Но важно не только само наличие защиты, также важна скорость её срабатывания. В зависимости от реализации, защита от перегрузки по току может: полностью отключить выход блока питания от нагрузки, ограничить выходной ток заданным пороговым уровнем или перейти в режим стабилизации выходного тока (CC — Constant Current), сохранив то значение тока, которое было до перегрузки

В этом коротком видео показано как срабатывает защита маломощного лабораторного блока питания ITECH IT6720 при коротком замыкании его выходов.

Демонстрация срабатывания защиты от перегрузки по току при коротком замыкании.

Защита от перегрузки по напряжению (сокращённо OVP — Over Voltage Protection) срабатывает при превышении уровня напряжения на выходных клеммах блока питания заданного значения. Такая ситуация может возникать при работе на нагрузку с повышенным сопротивлением в режиме стабилизации тока. Или при попадании на клеммы лабораторного блока питания внешнего напряжения. Ещё одно применение этого типа защиты — это ограничение выходного напряжения блока питания на безопасном для подключенного оборудования уровне. Например, при питании цифровой схемы с напряжением 5 Вольт, есть смысл в настройках блока питания установить 5,5 Вольт в качестве порога срабатывания защиты.

Защита от перегрузки по мощности (сокращённо OPP — Over Power Protection) есть во всех моделях с . Задача этой защиты — ограничить максимальную мощность, которую лабораторный блок питания отдаёт в нагрузку, для того, чтобы силовые компоненты блока питания работали в штатном режиме и не перегревались. Если при работе в режиме стабилизации выходного напряжения (CV — Constant Voltage) будет превышен ток потребления, то прибор автоматически перейдёт в режим стабилизации выходного тока (CC — Constant Current) и начнёт снижать напряжение на нагрузке.

Защита от перегрева (сокращённо OTP — Over Temperature Protection) срабатывает при повышенном нагреве силовых компонентов блока питания, находящихся внутри корпуса. В простых моделях используется один датчик температуры, который просто впаян в плату управления. Он отслеживает среднюю температуру внутри корпуса и не способен быстро реагировать на опасный нагрев силовых элементов. В хороших моделях используется несколько датчиков, расположенных прямо в точках максимального выделения тепла. Такая реализация обеспечивает гарантированную защиту прибора, даже при быстром локальном перегреве. Обычно в хороших моделях защита от перегрева работает совместно с вентиляторами охлаждения с изменяемой частотой вращения. Чем больше тепла выделяется внутри прибора, тем выше скорость вращения вентиляторов. Если внутренняя температура всё-таки приблизится к критической, то будет выдано предупреждение (звуковое и надпись на экране), а если произойдёт превышение, то лабораторный блок питания автоматически выключится.

Также в лабораторных блоках питания встречаются такие виды защиты: от смены полярности (реверса), от пониженного напряжения (UVP — Under Voltage Protection) и от аварийного отключения.

Количество каналов

Лабораторные блоки питания выпускаются с одним, двумя или тремя выходными каналами. Здесь мы рассмотрим основные моменты их использования, а про гальваническую изоляцию каналов рассказывается .

Большинство лабораторных блоков питания имеют один выходной канал, особенно это касается мощных устройств. Практически все модели с мощностью более 500 Вт имеют один канал. Поэтому часто задают вопрос: можно ли объединять несколько одноканальных приборов? Можно, но есть особенности. Первое, что надо учитывать, когда Вы включаете последовательно несколько импульсных блоков питания: частоты переключения даже однотипных блоков питания будут слегка отличаться. Это будет создавать повышенные пульсации на выходе. Также есть вероятность резонансных эффектов, при которых уровень пульсаций будет периодически резко возрастать.

Второй момент — это соединение «+» и «-» двух приборов для формирования биполярного напряжения для питания транзисторных усилителей, АЦП и подобных устройств. Кроме повышенных пульсаций, будет сложно обеспечить одновременное включение и выключение сразу двух напряжений и их синхронную регулировку. Третий момент — последовательное соединение нескольких высоковольтных источников напряжения может превысить порог пробоя их изоляции. Как результат: возгорание и другие опасные последствия.

Учитывая сказанное, становится понятно, что для схем, в которых предусмотрено несколько питающих напряжений, лучше использовать двухканальные или трёхканальные лабораторные блоки питания, которые специально для этого предназначены. А для генерации высоких напряжений, лучше использовать специальные высоковольтные модели, например модель ITECH IT6726V с напряжением до 1 200 В или модель ITECH IT6018C-2250-20 с напряжением до 2 250 В.

Для примера, на этой фотографии показан типичный двухканальный лабораторный блок питания ITECH IT6412.

Типичный двухканальный лабораторный блок питания ITECH IT6412.

Для чего используются электронные нагрузки

Основная задача электронных нагрузок — это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Примеры устройств, для проверки работы которых применяют электронные нагрузки.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Задняя панель маломощной электронной нагрузки серии IT8800 с интерфейсными разъёмами для подключения к компьютеру.

Технические спецификации и результаты тестов

Прозводитель Channel Well Engelking Elektronik Herolchi SCS Task Topower
Модель CWT-300ATX-12D AP2-6300SFC-A HEC-300LR-PT SCS-300 TK-930TX Top-320P4
Общий рейтинг Нормально Удовл. Удовл. Удовл. Нормально Удовл.
Технические спецификации/Результаты тестов
Фотография модели
Максимальная мощность
(Данные производителя/
Наши измерения)
300/307 Вт 300/339 Вт 300/351 Вт 300/302 Вт 300/204 Вт 320/353 Вт
-5 V/
-12 V
(Данные производителя)
0.5/0.5 A 0.3/0.8 A 0.5/0.8 A 0.6/0.6 A 0.6/0.6 A 0.5/0.8 A
+3.3 V/
+5 V/+2 V
(Данные производителя)
30/20/15 A 30/28/11 A 30/28/15 A 23/15/10 A 25/15/12 A 32/26/15 A
+5 VSB (A)
(Данные производителя)
2.0 A 2.0 A 2.0 A 1.5 A 1.5 A 2.0 A
Компенсация коэффициента
мощности
активная активная пассивная пассивная пассивная активная
Число вентиляторов/
регулировка вращения
2/активная 1/активная 1/активная 1/активная 1/активная 2/активная
Поддержка питания 230
В
да да нет да да да, для любого стандарта
Входное напряжение/
установка напряжения
230 В/i от 100 до 240 В/автомат 230 В/i 115 и 230 В/перекл. 115 и 230 В/перекл. от 195 до 250 В/автомат
Провода/
HDD разъемы/
FDD разъемы
3/7/2 3/5/1 3/6/2 2/4/2 2/4/2 3/8/2
Длина кабеля для
HDD и
FDD разъемов
65 см 60 см от 67 до 94 см 60 см 60 см от 65 до 90 см
Длина кабеля
ATX/ATX
12V/AUX
38/39/39 см 51/52/53 см 51/46/53 см 32/32/32 см 32/32/32 см 48/50/48 см
Подключение мониторинга
вентилятора/регулятора
нет/нет да/нет нет/нет нет/нет нет/нет нет/нет
Кабель питания/
Винты/
Инструкция
да/нет/нет да/нет/да да/да/да нет/нет/нет нет/нет/нет да/да/нет
Дополнительные детали нет пассивный внешний кулер нет нет нет розетка питания для
любого стандарта

Какие бывают электронные нагрузки

Большинство серий электронных нагрузок предназначены для тестирования источников питания постоянного тока (аккумуляторов, блоков питания, солнечных батарей и др.), типичные примеры: серия ITECH IT8500+ и серия ITECH IT8800. Для тестирования источников питания переменного тока (инверторов, источников бесперебойного питания, трансформаторов и др.) выпускаются специализированные AC/DC электронные нагрузки переменного и постоянного тока, типичный пример: серия ITECH IT8600.

Конструктивно серийные электронные нагрузки изготавливаются в приборных корпусах. Размер и масса корпуса напрямую зависят от максимальной мощности, которую может рассеивать нагрузка. Самые маломощные модели могут рассеивать около 100 Вт и помещаются в небольших компактных корпусах, как например модель IT8211 рассчитанная на 150 Вт.

Типичная маломощная электронная нагрузка (модель ITECH IT8211, максимальная мощность 150 Вт).

Более серьёзные модели, как например пятикиловаттная нагрузка ITECH IT8818B, могут монтироваться в промышленную стойку и весят 40 и более килограмм.

Типичная мощная электронная нагрузка (модель ITECH IT8818B, максимальная мощность 5 кВт).

Также выпускаются модели, которые могут рассеивать десятки и даже сотни киловатт. Чтобы увидеть варианты конструктивного исполнения электронных нагрузок разной мощности, посмотрите серию ITECH IT8800.

Иногда, для удешевления, вместо электронной нагрузки используют реостат (мощный переменный резистор). Использование реостата при тестировании силовых устройств связано с такими ограничениями:
— отсутствие режима постоянного тока потребления;
— отсутствие режима постоянной мощности;
— отсутствие режима стабилизации напряжения;
— отсутствие режима изменения состояния по списку заданных значений;
— отсутствие автоматизации работы;
— значительная индуктивность реостата;
— необходимость использовать дополнительный вольтметр и амперметр.
Поэтому вместо устаревших методов тестирования, эффективнее и в конечном итоге дешевле применять современную контрольно-измерительную аппаратуру, специально разработанную под конкретную задачу.

Использование хорошей электронной нагрузки позволяет существенно упростить и ускорить процесс тестирования любых источников электропитания, а также сделать этот процесс безопасным и эффективным.

Диапазон значений напряжения и тока

У современных лабораторных блоков питания бывает два типа диапазонов выходных напряжений и токов: фиксированный и с автоматическим ограничением выходной мощности.

Фиксированный диапазон встречается у большинства недорогих лабораторных блоков питания. Такие блоки питания могут выдать любую комбинацию напряжения и тока в пределах своих максимальных значений. Например, одноканальный лабораторный блок питания на 40 В и 15 А может поддерживать на нагрузке напряжение 40 Вольт даже при токе потребления 15 Ампер. При этом, потребляемая нагрузкой мощность составит: 40 В * 15 А = 600 Вт. Всё просто и понятно, но с таким прибором Вы не сможете установить напряжение больше 40 В и ток больше 15 А.

Автоматическое ограничение выходной мощности существенно расширяет диапазон лабораторного блока питания по напряжению и току. Например, модель ITECH IT6952A с такой же максимальной мощностью 600 Вт, может формировать напряжение до 60 В и ток до 25 А в любых комбинациях, при которых выходная мощность ограничена значением 600 Вт. Это значит, что Вы сможете выдать в нагрузку не только 40 В при токе 15 А, а также 60 В при токе 10 А, 24 В при токе 25 А и много других комбинаций. Если сравнивать с лабораторным блоком питания на 600 Вт с фиксированным диапазоном, то очевидно, что лабораторный блок питания с автоматическим ограничением выходной мощности значительно универсальнее и может заменить несколько более простых приборов. На этом рисунке показан диапазон возможных напряжений и токов, которые обеспечивает модель ITECH IT6952A.

Рабочий диапазон напряжений и токов модели ITECH IT6952A, способной заменить несколько лабораторных блоков питания с фиксированным диапазоном.

Поскольку размеры, масса и цена лабораторного блока питания в основном зависят не от напряжения и тока, а от максимальной мощности, то есть смысл всегда выбирать модель с автоматическим ограничением выходной мощности. Это обеспечит универсальность решения за те же деньги.

Разновидности лабораторных блоков питания

Для начала, давайте разберёмся с существующими названиями. Чем отличается лабораторный блок питания от просто блока питания? Или в чём отличие блока питания от источника питания? Вот простые определения:

1. Лабораторным блоком питания называют прибор, который предназначен для формирования регулируемого напряжения или тока по одному или нескольким каналам. Лабораторный блок питания содержит дисплей, элементы управления, защиту от неправильного использования, а также полезные дополнительные функции. Весь материал на этой странице посвящён именно таким приборам.
2. Лабораторный источник питания — это то же самое, что и лабораторный блок питания.
3. Просто блоком питания называют электронное устройство, которое предназначено для формирования заранее заданного напряжения по одному или нескольким каналам. Блок питания, как правило, не имеет дисплея и кнопок управления. Типичный пример — это компьютерный блок питания на несколько сотен ватт.
4. Источники питания бывают двух типов: первичные источники питания и вторичные источники питания. Первичные источники электропитания преобразуют неэлектрические виды энергии в электрическую. Примеры первичных источников: электрическая батарейка, солнечная батарея, ветрогенератор и другие. Вторичные источники электропитания преобразуют один вид электрической энергии в другой для обеспечения необходимых параметров напряжения, тока, частоты, пульсаций и т.д. Примеры вторичных источников питания: трансформатор, AC/DC преобразователь (например, компьютерный блок питания), DC/DC преобразователь, стабилизатор напряжения и т.д. Кстати, лабораторный блок питания — это одна из разновидностей вторичного источника электропитания.

Теперь подробно обсудим разновидности и главные характеристики лабораторных блоков питания:
1. : линейные или импульсные.
2. : фиксированный или с автоматическим ограничением мощности.
3. : одноканальные или многоканальные.
4. : с гальванически изолированными каналами или с неизолированными.
5. : стандартные или большой мощности.
6. : от перегрузки по напряжению, по току, от перегрева и другие.
7. : постоянное напряжение и ток или переменное напряжение и ток.
8. : только ручное управление или ручное плюс программное управление.
9. Дополнительные функции: компенсация падения напряжения в проводах подключения, встроенный прецизионный мультиметр, изменение выхода по списку заданных значений, активация выхода по таймеру, имитация аккумулятора с заданным внутренним сопротивлением, встроенная электронная нагрузка и другие.
10. Надёжность: качество элементной базы, продуманность дизайна, тщательность выходного контроля.

Рассмотрим каждую из этих характеристик подробнее, поскольку все они важны для правильного и обоснованного выбора лабораторного блока питания.

Типовые применения и популярные модели лабораторных блоков питания

Теперь, когда мы разобрались с основными критериями выбора лабораторных источников питания, давайте рассмотрим типичные задачи применения этих устройств и подходящие для этих задач модели приборов.

Универсальный лабораторный блок питания для широкого круга задач

Для большинства типовых задач, возникающих при разработке или ремонте электронной аппаратуры отлично подходит серия ITECH IT6900A (до 150 В, до 25 А, до 600 Вт), которая создавалась в качестве основного лабораторного блока питания, способного решать 90% всех вопросов:

Если нужен универсальный блок питания, но за минимальные деньги, то выбирайте эконом серию ITECH IT6700. В ней две модели: на 100 Вт и на 180 Вт. Нет программного управления, зато есть автоматическое ограничение выходной мощности, что не часто встречается в таком ценовом диапазоне:

Высокое напряжение и большой ток

Если нужны постоянные напряжения более 100 В или токи более 10 А, смело выбирайте одну из 15-ти модели серии ITECH IT6700H. Приборы этой серии смогут обеспечить напряжение до 1 200 В и ток до 220 А при максимальной мощности до 3 кВт. Возможно как ручное, так и программное управление:

Если Вам необходимо, чтобы лабораторный блок питания выдавал в нагрузку мощность более 3 кВт, то у серии ITECH IT6000C нет альтернативы. Это новая, очень функциональная серия, выпущенная в конце 2018 года. Серия состоит из 69-ти моделей с напряжением до 2 250 В, током до 2 040 А и мощностью до 144 кВт:

Разработка и ремонт точной аналоговой аппаратуры, аудиосхем и чувствительных датчиков

Также можете посмотреть эти серии линейных блоков питания:

Генерация переменного напряжения и тока

Если Вам необходимо формировать синусоидальное напряжение или синусоидальный ток, то есть две серии источников с такой возможностью. Это серия ITECH IT7300 (1 фаза, мощность до 3 кВА):

И мощная серия ITECH IT7600 (1 фаза и 3 фазы, мощность до 54 кВА):

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: