Транзисторы высокочастотные: справочник приборов вч и свч

Маркировка

Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.

Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.

Графические иллюстрации характеристик

Рис. 1. Внешняя характеристика транзистора в схеме с общим эмиттером. Зависимость коллекторной нагрузки IC от напряжения коллектор-эмиттер UCE при различных токах (управления) базы IB.

Рис. 2. Зависимость статического коэффициента усиления по току от коллекторной нагрузки IC.

Зависимость снята при импульсном напряжении коллектор-эмиттер UCE = 5 В.

Рис. 3. Зависимости напряжений насыщения коллектор-эмиттер UCE(sat) и эмиттер-база UBE(sat) от величины коллекторной нагрузки IC.

Зависимость снята при соотношении амплитуд импульсов токов коллектора и базы IC/IB = 5.

Рис. 4. Снижение предельной токовой нагрузки IC в области безопасной работы транзистора при увеличении температуры корпуса прибора TC.

Кривая «Dissipation Limited» — снижение токовой нагрузки в результате общего перегрева п/п структуры.

Кривая «S/b Limited» — снижение токовой нагрузки для исключения вторичного пробоя п/п структуры локально, в местах повышенной плотности тока.

Определение теплового режима транзистора во многом сводится к определению рассеиваемой мощности и соотнесению её с областью безопасной работы транзистора (ОБР). Для транзистора, работающего в ключевом режиме, приходится учитывать потери на коммутационных интервалах, а также ряд особенностей, определяемых реактивными свойствами коллекторной цепи и источника питания.

Рис. 5. Область безопасной работы транзистора, определена при температуре среды Ta = 25°С при нагрузке транзистора одиночными импульсами (Single Pulse) различной длительности: PW = 10 мкс; 50 мкс; 100 мс; 300 мкс; 1,0 мс; 10 мс; 100 мс.

Выделяются 4 участка ограничивающих линий предельного тока коллектора:

  1. горизонтальный – предельный ток транзистора, определяющий устойчивость паяных соединений. При возрастании температуры корпуса вводится поправка согласно графику Рис. 4;
  2. участок «Dissipation Limited» – предельный ток, ограничивающий общий нагрев п/п структуры;
  3. участок «S/b Limited» — ограничение тока исходя из недопущения вторичного пробоя п/п структуры;
  4. вертикальный участок – предельное напряжение коллектор-эмиттер, не приводящее к лавинному пробою п/п структуры.

Характеристики ОБР по Рис. 5 подходят для анализа безопасной работы транзистора при резистивном или емкостном характере нагрузки, а также при любой нагрузке на интервале проводимости (ton). См. диаграмму тока коллектора в импульсном режиме выше.

В схеме с индуктивной нагрузкой на коммутационном интервале (tstg + tf), при восстановлении непроводящего состояния, возникающие на транзисторе пиковые перенапряжения могут превышать критические значения и вызвать пробой п/п структуры. Для уменьшения перенапряжений вводятся ограничители напряжения: снабберные RC-цепи, активные ограничители и т. п. Для уменьшения потерь (уменьшения длительности коммутационного интервала) в цепь управления (базы) транзистора вводится отрицательное напряжение смещения.

Увеличение напряжений при вводе отрицательного смещения и ограничение коллекторного тока отражаются на конфигурации ОБР. Такая ОБР является неотъемлемой характеристикой работы транзистора в переключающем режиме с индуктивной нагрузкой.

Рис. 6. Область безопасной работы с обратным смещением. Характеристика снята при условии Tc ≤ 100°C.

Увеличение UCEX(sus) при значительном ограничении тока коллектора – результат ввода ограничителей коммутационных перенапряжений до уровня 450 В.

Условиями безопасной (корректной) работы транзистора в ключевом режиме является выполнение следующих условий:

  • непревышение температурных ограничений по структуре в целом;
  • токи и напряжения на интервале включения (ton) не превышают ограничений ОБР;
  • токи и напряжения на интервале выключения (tstg + tf) не превышают ограничений ОБР с обратным смещением.

С общим коллектором (ОК)

Схему с общим коллектором часто называют “эмиттерным повторителем”. Она имеет высокое входное (порядка >200кОм) и низкое выходное (порядка <10кОм) сопротивления. Эта схема не даёт усиления по напряжению. Схему с общим коллектором используют во входных каскадах усилителей для согласования двух каскадов усилителя, из которых предыдущий имеет высокое выходное, а последующий, обычно выходной каскад, — малое входное сопротивление.  Схема с ОК не изменяет фазы входного сигнала. Выходное напряжение на выходе схемы с ОК (рисунок 3, общий коллектор), практически повторяет напряжение на базе транзистора, с учётом величины незначительного падения напряжения на переходе эмиттер-база, отсюда и название “эмиттерный повторитель”. Благодаря высокому усилению по току, схему с ОК применяют также и для управления токами различных устройств, например соленоидов.

Электронные ключи

Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

УГО идеальных ключей показаны на рисунке:

Ключи, работающие на замыкание и размыкание соответственно.

Ключевой режим характеризуется двумя состояниями: «включено»/»выключено».

Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

В реальных ключах токи и падения напряжения, соответствующие состояниям «включено»/»выключено», зависят от типа и параметров применяемых диодов, транзисторов, тиристоров и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивностей коммутируемой цепи.

Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin. Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

  • Сопротивлениями ключа в открытом и закрытом состояниях;
  • Быстродействием – временем перехода ключа из одного состояния в другое;
  • Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  • Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  • Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  • Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Где и как мы можем использовать ?

Максимальная нагрузка, которую может выдерживать этот транзистор, составляет около 150 мА, что достаточно для работы многих устройств в цепи, например реле, светодиодов и других элементов схемы. Напряжение насыщения Uкэ.нас. составляет всего 0.3 В, что также удовлетворяет почти все потребности. Как обсуждалось выше, C945 имеет хороший коэффициент усиления постоянного тока hFE и низкий уровень шума, благодаря чему он идеально подходит для использования в каскадах схем предусилителя, усилителя звука или для усиления других сигналов в электронных цепях. Напряжение насыщения большинства биполярных транзисторов составляет 0,6 В, но у нашего С945 Uкэ.нас. = 0,3 В, поэтому он может работать в цепях низкого напряжения.

Представление транзистора в малосигнальном режиме работы четырехполюсником

В малосигнальном режиме работы транзистор может быть представлен четырехполюсником. Когда напряжения u1, u2 и токи i1, i2 изменяются по синусоидальному закону, связь между напряжениями и токами устанавливается при помощи Z, Y, h параметров.

Потенциалы 1′, 2′, 3 одинаковы. Транзистор удобно описывать, используя h-параметры.

Электрическое состояние транзистора, включенного по схеме с общим эмиттером, характеризуется четырьмя величинами: Iб, Uбэ, Iк и Uкэ. Две из этих величин можно считать независимыми, а две другие могут быть выражены через них. Из практических соображений в качестве независимых удобно выбирать величины Iб и Uкэ. Тогда Uбэ = f1(Iб, Uкэ) и Iк = f2(Iб, Uкэ).

В усилительных устройствах входными сигналами являются приращения входных напряжений и токов. В пределах линейной части характеристик для приращений Uбэ и Iк справедливы равенства:

Физический смысл параметров:

  • – входное сопротивление при коротком замыкании полюсов 2-2′;
  • – коэффициент передачи по напряжению в режиме хх со стороны полюсов 1-1′;
  • – коэффициент передачи по току при коротком замыкании полюсов 2-2′
  • – выходная проводимость при холостом ходе на входе, полюсы 1-1′ разомкнуты.

Для схемы с ОЭ коэффициенты записываются с индексом Э: h11э, h12э, h21э, h22э.

В паспортных данных указывают h21э = β , h21б = α. Эти параметры характеризуют качество транзистора. Для увеличения значения h21 нужно либо уменьшить ширину базы W, либо увеличить диффузионную длину, что достаточно трудно.

Три схемы включения биполярного транзистора

Различают схему включения с общей базой, общим эмиттером, общим коллектором. Схемы для p-n-p транзистора показаны на рисунках а, б, в:

В схеме с общей базой (рис. а) электрод база является общим для входной и выходной цепи, в схеме с общим эмиттером (рис. б) общим является эмиттер, в схеме с общим коллектором (рис. в) общим является коллектор.

На рисунке показаны: Е1 – питание входной цепи, Е2 – питание выходной цепи, Uвх – источник усиливаемого сигнала.

В качестве основной принята схема включения, в которой общим электродом для входной и выходной цепи является эмиттер (схема включения биполярного транзистора с общим эмиттером). Для такой схемы входной контур проходит через переход база-эмиттер и в нем возникает ток базы:

Малое значение тока базы во входном контуре обусловило широкое применение схемы с общим эмиттером.

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Пара выводов транзистора PNP NPN
Коллектор Эмиттер RВЫСОКОЕ RВЫСОКОЕ
Коллектор База RНИЗКОЕ RВЫСОКОЕ
Эмиттер Коллектор RВЫСОКОЕ RВЫСОКОЕ
Эмиттер База RНИЗКОЕ RВЫСОКОЕ
База Коллектор RВЫСОКОЕ RНИЗКОЕ
База Эмиттер RВЫСОКОЕ RНИЗКОЕ

Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.

Замена и эквиваленты

Бывает, что вышедший из строя компонент уже не продается. Поэтому радиолюбители подбирают транзистор, который похож по своим техническим характеристикам на неисправный или ищут его аналог. Для поиска аналогов используют информацию из даташит на устройство и приведенные в нем технические характеристики.

Полные аналоги с d1555 по корпусу, его распиновке и техническому описанию, имеют следующие импортные транзисторы: 2SC42943; 2SC4744; BU508D; D1651; D2095; D2195; ECG2331. Можно подобрать  похожий по характеристикам, например d5703, как показано на видео ниже о подборе строчника.

Подходящей замены из отечественных устройств для данного импульсника нет. Некоторые умельцы используют в качестве альтернативы, на отдельных вариантах схем, советский КТ838А. Это очень сомнительное решение, вместе с которым надо учесть отсутствие у этого него защитного диода, резистора и при этом наличие большого металлического корпуса.

Производители

Транзисторы D882 изготавливаются следующими зарубежными фирмами:  SeCoS Halbleitertechnologie, Shenzhen Jingdao Electronic, SHIKE Electronics, Jiangsu Changjiang Electronics Technology, Daya Electric Group, Diode Semiconductor Korea,  SHENZHEN KOO CHIN ELECTRONICS, Shenzhen Jin Yu Semiconductor, STMicroelectronics, SHENZHEN YONGERJIA INDUSTRY, Shenzhen Electronics, GUANGDONG HOTTECH INDUSTRIAL, Stanson Technology, WILLAS ELECTRONIC CORP,  Galaxy Semi-Conductor Holdings Limited, Nanjing International Group.

На Российском рынке чаще всего встречаются устройство произведённое компаниями Shenzhen Electronics, STMicroelectronics.

Биполярные транзисторы

Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов — электроны и дырки.

Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.

Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.

  • Э — эмиттер,
  • Б — база,
  • К — коллектор,
  • ЭП — эмиттерный переход,
  • КП — коллекторный переход,
  • W — толщина базы.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  1. Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток
  2. Режим насыщения – оба p-n перехода открыты
  3. Активный режим – один из p-n переходов открыт, а другой закрыт

В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.

В нормальном режиме коллекторный p-n переход закрыт, эмиттерный – открыт. Ток коллектора пропорционален току базы.

Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:

При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ. Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.

Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб. Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк.

Связь между приращениями эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока

Как следует из качественного рассмотрения процессов, происходящих в биполярном транзисторе, коэффициент передачи тока всегда меньше единицы. Для современных биполярных транзисторов α = 0,9 ÷ 0,95

При Iэ ≠ 0 ток коллектора транзистора равен:

В рассмотренной схеме включения базовый электрод является общим для эмиттерной и коллекторной цепей. Такую схему включения биполярного транзистора называют схемой с общей базой, при этом эмиттерную цепь называют входной, а коллекторную – выходной. Однако такую схему включения биполярного транзистора применяют очень редко.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Устройство и принцип работы тиристора (тринистора)

Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.

Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн

Iа – ток анода (силовой ток в цепи анод-катод тиристора ); Uак – напряжение между анодом и катодом; Iу – ток управляющего электрода ( в реальных схемах используют импульсы тока ); Uук – напряжение между управляющим электродом и катодом; Uпит – напряжение питания.
Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: