Диод ганна

Достоинства и недостатки

У этого устройства есть свои положительные стороны и свои недостатки.

Плюсы:

  1. Хорошо удерживает электрический ток в цепи;
  2. Маленькая емкость барьера из металлов — полупроводников, что увеличивает долгосрочную работоспособность диода;
  3. В отличие от других полупроводников, в диоде Шоттки наблюдается низкое падение напряжения;
  4. В электрической цепи данный диод Шоттки быстро действует.

Большой минус в том, что бывает очень большим обратный ток. В некоторых случаях, например, превышение нужного уровня обратного тока даже на несколько ампер, электронный элемент просто ломается или выходит из строя в самый неподходящий момент вне зависимости от того, новый он или старый. Также часто можно наблюдать утечки диодов, что может привести в некоторых случаях к печальным последствиям, если относится к проверке полупроводников с пренебрежением.

Теория

Цель работы

Ознакомиться с основными фотометрическими
величинами; ознакомиться с принципом работы
фотометра; проверить
выполнение закона Ламберта для источника света

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют
собой полупроводниковые
приборы с одним электронно-дырочным переходом
(p–n-переходом).

Одним из свойств p–n-перехода является способность
изменять свое сопротивление в зависимости от
полярности
напряжения внешнего источника. Причем разница
сопротивлений при прямом и обратном направлениях тока
через
p–n-переход может быть
настолько велика, что в ряде случаев, например для
силовых диодов, можно считать, что
ток протекает через диод только в одном направлении –
прямом, а в обратном направлении ток настолько мал,
что им
можно пренебречь. Прямое направление – это когда
электрическое поле внешнего источника направлено
навстречу
электрическому полю p–n-
перехода, а обратное – когда направления этих
электрических полей совпадают.
Полупроводниковые диоды, использующие вентильное
свойство p–n-перехода, называются выпрямительными
диодами и
широко используются в различных устройствах для
выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного
p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) –
заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) –
постоянная
Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) –
температура в градусах Кельвина.

Графическое изображение этой зависимости
представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную
нелинейность, что предопределяет зависимость
сопротивления
диода от положения рабочей точки.

Различают сопротивление статическое \(R_{ст}\) и
динамическое \(R_{дин}\). Статическое сопротивление
\(R_{ст}\),
например в точке А (рис. 1.1), определяется как
отношение напряжения \(U_A\) и тока \(I_A\),
соответствующих этой точке: \(R_{ст} =
\frac{U_A}{I_A} = tg{\alpha}\)

Динамическое сопротивление определяется как отношение
приращений напряжения и тока (рис. 1.1):
\(R_{дин} = \frac{\Delta U}{\Delta I}\);

Рис. 1.1

При малых значениях отклонений \(∆U\) и \(ΔI\)
можно пренебречь нелинейностью
участка АВ характеристики и считать его гипотенузой
прямоугольного треугольника
АВС, тогда \(R_{дин} = tgβ\).

Если продолжить линейный участок прямой ветви
вольт-амперной характеристики
до пересечения с осью абсцисс, то получим точку
\(U_0\) – напряжение отсечки, которое
отделяет начальный пологий участок характеристики,
где динамическое сопротивление
\(R_{дин}\) сравнительно велико от круто
изменяющегося участка, где \(R_{дин}\) мало.

При протекании через диод прямого тока
полупроводниковая структура нагревается,
и если температура превысит при этом предельно
допустимое значение, то произойдет
разрушение кристаллической решетки полупроводника и
диод выйдет из строя. Поэтому
величина прямого тока диода ограничивается предельно
допустимым значением
\(I_{пр.max}\) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном
направлении к диоду, то
сначала обратный ток будет изменяться незначительно,
а затем при определенной величине
\(U_{проб}\) начнется его быстрое увеличение (рис.
1.2), что говорит о наступлении пробоя p–n-перехода.
Существуют несколько видов пробоя p–n-перехода в
зависимости от
концентрации примесей в полупроводнике, от ширины
p–n-перехода и температуры:

  • обратимый (электрический пробой);
  • необратимые (тепловой и поверхностный пробои).

Необратимый пробой для полупроводникового прибора
является нерабочим и недопустимым режимом.

Рис. 1.2

Поэтому в паспортных данных диода всегда
указывается предельно допустимое
обратное напряжение \(U_{проб}\) (напряжение
лавинообразования), соответствующее началу
пробоя p–n-перехода. Обратное номинальное значение
напряжения составляет обычно
\(0,5\ U_{проб}\) и определяет класс прибора по
напряжению. Так, класс 1 соответствует 100 В
обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют
для получения круто нарастающего
участка ВАХ, когда малому приращению напряжения
\(∆U\) соответствует большое изменение тока
\(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме,
называются
стабилитронами, т. к. в рабочем диапазоне при
изменении обратного тока от \(i_{обр. min}\) до
\(i_{обр. max}\) напряжение на диоде остается почти
неизменным, стабильным. Поэтому для
стабилитронов рабочим является участок пробоя на
обратной ветви ВАХ, а напряжение
пробоя (напряжение стабилизации) является одним из
основных параметров.

Немного об эффекте Ганна

Вышеназванное явление впервые обнаружил Джон Ганн в 60-е гг XX века. При проведении исследований, связанных с арсенидом галия, выявилось, что каждый опыт с данным материалом сопровождается характерными помехами.

Рис 2 Движение электронов в диоде

Выявленный эффект было решено применить для создания сверхвысокочастотных электрических колебаний, превышающих пороговое значение, в условиях устойчивого электрического поля. При эффекте Ганна возникают сверхвысокие частоты (до нескольких гигагерц), это происходит, если уровень прилагаемого к конструкции напряжения выше находящегося в критической точке порогового значения.

2 Задание к работе

2.1 Исследовать вольтамперные характеристики (ВАХ) диодов в прямом включении

2.1.1 С помощью соединительных проводников собрать схему для исследования ВАХ диодов в прямом включении (рисунок 1).



Рисунок 1 – Схема исследования ВАХ диодов в прямом включении.



Рисунок 2 – Вид собранной на стенде схемы.

2.1.2 Установить диапазон регулирования источника Е1 0..1 В. Выбрать на графике по вертикальной оси mА1, диапазон установит 0..10 мА. Выбрать на графике по горизонтальной оси V1, диапазон 0..1 В.

2.1.3 Снять вольтамперные характеристики германиевого и кремниевого диодов при прямом включении. Для этого плавно поворачивать ручку управления источника E1 по часовой стрелке до тех пор пока ток мА1 не достигнет 10 мА. Обе характеристики должны быть построены на одном графике. Для этого после снятия первой характеристики необходимо нажать кнопку сброса источника E1, вставить следующий диод и повторить измерение характеристики. При необходимости следует увеличить диапазон регулирования источника E1 до 0..2 В.



Рисунок 3 – ВАХ кремниевого и германиевого диодов. Образец.

2.1.4 Сохранить график в заранее подготовленную папку с помощью кнопки для дальнейшей вставки его в отчет.

2.2 Исследовать ВАХ диода при обратном включении

2.2.1 Собрать схему для исследования ВАХ диода при обратном включении (рисунок 4).



Рисунок 4 – Схема исследования ВАХ диодов в обратном включении.



Рисунок 5 – Вид собранной на стенде схемы.

2.2.2 Установить диапазон регулирования источника Е1 -10..0В. Выбрать на графике по вертикальной оси mА1, диапазон установить: нижняя граница графика -0,1 mА, верхняя граница 0 mA. Переключить измерительный шунт амперметра mA1 для измерения малого тока, для этого следует нажать на кнопку , расположенную рядом со стрелочным индикатором mA1. Выбрать по горизонтальной оси V1, установить диапазон: левая граница -10В, правая граница 0В.

2.2.3 Снять вольтамперные характеристики германиевого диода в обратном включении при комнатной и повышенной температурах. Для этого плавно поворачивать ручку управления источника E1 против часовой стрелки до тех пор, пока напряжение V1 не достигнет -10В. Повышения температуры можно добиться прикосновением пальцев руки к корпусу диода на несколько секунд. Обе характеристики должны быть построены на одном графике (аналогично пункту 2.1.3).

2.2.4 Сохранить график.



Рисунок 6 – ВАХ диода в обратном включении. Образец.

2.3 Исследовать вольтамперную характеристику стабилитрона при обратном включении

2.3.1 Собрать схему для исследования ВАХ диода при обратном включении, как показано на рисунке 4, установить стабилитрон.

2.3.2 Установить диапазон регулирования источника Е1 -10..0 В. Выбрать на графике по вертикальной оси mА1, диапазон установить: нижняя граница графика -10 мА, верхняя граница 0 мА. Переключить измерительный шунт амперметра mA1 для измерения большого тока, для этого нажать на кнопку . Выбрать по горизонтальной оси V1, установить диапазон: левая граница -10 В, правая граница 0 В.

2.3.3 Снять ВАХ стабилитрона при обратном включении. Для этого плавно поворачивать ручку управления источника E1 против часовой стрелки, до тех пор пока ток мА1 не достигнет -10 мА. На графике должен быть четко виден пробой стабилитрона.

2.3.4 Сохранить график.



Рисунок 7 – ВАХ стабилитрона. Образец.

2.4 Исследовать однополупериодный выпрямитель

2.4.1 Собрать схему исследования однополупериодного выпрямителя (рисунок 8).



Рисунок 8 – Схема исследования однополупериодного выпрямителя.



Рисунок 9 – Вид собранной на стенде схемы.

Установить графопостроитель в режим временных характеристик. Выбрать для верхнего графика прибор V1, а для нижнего V2. Диапазон установить -10..10 В. установить амплитуду источника E1, постоянную составляющую 0 В. После получения осциллограммы остановить процесс измерения нажав кнопку . Сохранить осциллограмму.

Повторить пункт 2.4.2, изменив полярность включения диода. Сохранить осциллограмму.



Рисунок 10 – Осциллограмма выпрямителя. Прямая полярность диода.



Рисунок 11 – Осциллограмма выпрямителя. Обратная полярность диода.

Вольт-амперная характеристика

ВАХ — это характеристика полупроводникового элемента, показывающая зависимость I, проходящего через p-n-переход, от величины и полярности U (рис. 1).

Рисунок 1 — Пример вольт-амперной характеристики полупроводникового диода.

ВАХ отличаются между собой и это зависит от типа полупроводникового прибора. Графиком ВАХ является кривая, по вертикали которой отмечены значения прямого I (вверху). Внизу отмечены значения I при обратном подключении. По горизонтали указаны показания U при прямом и обратном включении. Схема состоит из 2 частей:

  1. Верхняя и правая — Д функционирует в прямом подключении. Показывает пропускной I и линия идет вверх, что свидетельствует о росте прямого U (Uпр).
  2. Нижняя часть слева — Д находится в закрытом состоянии. Линия идет практически параллельно оси и свидетельствует о медленном нарастании Iобр (обратного тока).

Из графика можно сделать вывод: чем круче вертикальная часть графика (1 часть), тем ближе нижняя линия к горизонтальной оси. Это свидетельствует о высоких выпрямительных свойствах полупроводникового прибора. Необходимо учитывать, что ВАХ зависит от температуры окружающей среды, при понижении температуры происходит резкое понижение Iобр. Если температура повышается, то повышается и Iобр.

Построение графика

Построить ВАХ для конкретного типа полупроводникового прибора несложно. Для этого необходимы блок питания, мультиметр (вольтметр и амперметр) и диод (можно построить для любого полупроводникового прибора). Алгоритм построения ВАХ следующий:

  1. Подключить БП к диоду.
  2. Произвести измерения U и I.
  3. Внести данные в таблицу.
  4. На основании табличных данных построить график зависимости I от U (рис. 2).

Рисунок 2 — Пример нелинейной ВАХ диода.

Рисунок 3 — ВАХ Шоттки.

Исходя из графика, носящего асимметричный характер, видно, что для этого типа диода характерно малое падение U при прямом подключении. Присутствует экспоненциальное увеличение I и U. Ток в барьере обусловлен отрицательно заряженными частицами при обратном и прямом смещениях. Шоттки обладают высоким быстродействием, так как диффузные и рекомбинационные процессы отсутствуют. I зависит от U благодаря изменению количества носителей, принимающих участие в процессах переноса заряда.

Кремниевый полупроводник широко применяется практически во всех электрических схемах устройств. На рисунке 4 изображена его ВАХ.

Рисунок 4 — ВАХ кремниевого Д.

На рисунке 4 ВАХ начинается с 0,6-0,8 В. Кроме кремниевых Д существуют еще германиевые, которые при нормальной температуре будут нормально работать. Кремниевый имеет меньший Iпр и Iобр, поэтому тепловой необратимый пробой у германиевого Д наступает быстрее (при подаче высокого Uобр), чем у его конкурента.

Выпрямительный Д применяется для преобразования переменного U в постоянное и на рисунке 5 приведена его ВАХ.

Рисунок 5 — ВАХ выпрямительного Д.

На рисунке изображена теоретическая (пунктирная кривая) и практическая (экспериментальная) ВАХ. Они не совпадают из-за того, что в теории не учитывались некоторые аспекты:

  1. Наличие R (сопротивления) эмиттерной области кристалла, выводов и контактов.
  2. Токи утечки.
  3. Процессы генерации и рекомбинации.
  4. Пробои различных типов.

Кроме того, температура окружающей среды значительно влияет на измерения, и ВАХ не совпадают, так как теоретические значения получают при температуре +20 градусов. Существуют и другие важные характеристики полупроводников, которые можно понять по маркировке на корпусе.

Существуют и дополнительные характеристики. Они нужны для применения Д в определенной схеме с U и I. Если использовать маломощный Д в устройствах с U, превышающем максимально допустимое Uобр, то произойдет пробой и выход из строя элемента, а также это может повлечь за собой цепочку выхода других деталей из строя.

ВАХ помогает определить такие сложные неисправности Д: пробой перехода и разгерметизация корпуса. Сложные неисправности могут привести к выходу из строя дорогостоящих деталей, следовательно, перед монтажом Д на плату необходимо его проверить.

Приложения

Разобрали радар скоростной пушки . Серый узел, прикрепленный к концу рупорной антенны медного цвета, представляет собой генератор на диоде Ганна, который генерирует микроволны.

Из-за их высокой частоты диоды Ганна в основном используются на сверхвысоких частотах. Они могут производить на этих частотах одну из самых высоких выходных мощностей среди полупроводниковых устройств. Чаще всего их используют в генераторах , но они также используются в микроволновых усилителях для усиления сигналов. Поскольку диод является однопортовым (двухполюсным) устройством, схема усилителя должна отделять исходящий усиленный сигнал от входящего входного сигнала для предотвращения связи. Одна общая схема — это усилитель отражения, в котором для разделения сигналов используется циркулятор . Смещения тройник необходимо изолировать ток смещения от высокочастотных колебаний.

Датчики и измерительные приборы

Генераторы на диодах Ганна используются для генерации СВЧ-энергии для: бортового радара предотвращения столкновений , антиблокировочной системы тормозов , датчиков для отслеживания движения транспорта, автомобильных радарных детекторов , систем безопасности пешеходов, регистраторов пройденного расстояния, датчиков движения , замедленного движения. датчики (для обнаружения пешеходов и движения транспорта со скоростью до 85 км / ч (50 миль / ч)), контроллеры сигналов светофора, автоматические открыватели дверей, автоматические ворота для движения, оборудование для контроля пропускной способности, охранная сигнализация и оборудование для обнаружения нарушителей, датчики для предотвращение схода поездов с рельсов, дистанционные датчики вибрации, тахометры скорости вращения, мониторы влажности.

Радиолюбительское использование

Благодаря своему низковольтному режиму работы диоды Ганна могут использоваться в качестве генераторов СВЧ-частоты для очень маломощных (несколько милливатт) микроволновых приемопередатчиков, называемых Ганнплексерами . Впервые они были использованы британскими радиолюбителями в конце 1970-х годов, и многие разработки Gunnplexer были опубликованы в журналах. Обычно они состоят из волновода диаметром около 3 дюймов, в который устанавливается диод. Для управления диодом используется источник постоянного тока низкого напряжения (менее 12 В), который можно соответствующим образом модулировать . Волновод заблокирован на одном конце, образуя резонатор, а другой конец обычно питает рупорную антенну . В волновод вставляется дополнительный « смесительный диод», который часто подключается к модифицированному радиовещательному FM- приемнику, чтобы можно было слушать другие любительские станции. Ганнплексеры чаще всего используются в любительских диапазонах 10 ГГц и 24 ГГц, и иногда сигнализация безопасности 22 ГГц модифицируется, поскольку диод (ы) можно поместить в слегка расстроенный резонатор со слоями меди или алюминиевой фольги на противоположных краях для перехода к лицензированный любительский оркестр. Обычно диод смесителя, если он не поврежден, повторно используется в существующем волноводе, и эти части хорошо известны своей чрезвычайно чувствительной к статике. На большинстве коммерческих устройств эта часть защищена параллельным резистором и другими компонентами, а в некоторых атомных часах Rb используется вариант. Смесительный диод полезен для низкочастотных приложений, даже если диод Ганна ослаблен из-за использования, и некоторые радиолюбители использовали их в сочетании с внешним генератором или диодом Ганна с длиной волны n / 2 для поиска спутников и других приложений.

Радиоастрономия

Генераторы Ганна используются в качестве гетеродинов для радиоастрономических приемников миллиметрового и субмиллиметрового диапазонов. Диод Ганна установлен в резонаторе, настроенном так, чтобы резонировать на двойной основной частоте диода. Длина полости изменяется микрометрической регулировкой. Доступны генераторы Ганна, способные генерировать более 50 мВт в 50% диапазоне настройки (одна полоса волновода).

Частота генератора Ганна умножается на диодный умножитель частоты для приложений субмиллиметрового диапазона.

1.3. Вольт-амперная характеристика p-n-перехода

Зависимость тока через p-n-переход от приложенного к нему напряженияI = f(U)называют вольтамперной характеристикойp-n-перехода, рисунок 4.

Рисунок 4 – Теоретическая и реальная ВАХ р-n-перехода

Вольтамперная характеристика электронно-дырочного перехода описывается уравнением Эберса-Молла:

где I– ток через переход при напряженииU;

IS– ток насыщения, создаваемый неосновными носителями заряда.IS называется также тепловым током, так как концентрация неосновных носителей зависит от температуры;

qe – заряд электрона;

k– постоянная Больцмана;

Т– абсолютная температура;

Если р-n-переход включен в прямом направлении, напряжениеU берут со знаком плюс, если в обратном – со знаком минус.

При прямом приложенном напряжении

При обратном (отрицательном) напряжении

Однако уравнение Эберса-Моллавесьма приблизительно совпадает с реальными вольтамперными характеристиками, так как не учитывает целого ряда физических процессов, происходящих в полупроводниках. К таким процессам относятся: генерация и рекомбинация носителей в запирающем слое, поверхностные токи утечки, падение напряжения на сопротивлении нейтральных областей, явления теплового, лавинного и туннельного пробоев.

Если ток, протекающий через переход, незначителен, то падением напряжения на сопротивлении нейтральных областей можно пренебречь. Однако при увеличении тока этот процесс оказывает все большее влияние на ВАХ прибора, т.е. его реальная характеристика идет под меньшим углом и вырождается в прямую линию, когда напряжение на запирающем слое становится равным контактной разности потенциалов.

При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем перехода. Существует три вида пробоев: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.

Туннельный эффект (эффект Зенера) заключается в прямом переходе валентных электронов из одного полупроводника в другой (где они уже будут являться свободными носителями заряда), что становится возможным при высокой напряженности электрического поля на переходе. Такая большая напряженность электрического поля на переходе может быть достигнута при высокой концентрации примесей в p— иn-областях, когда толщина перехода становится очень маленькой.

В широких p-n-переходах, образованных полупроводниками со средней либо малой концентрациями примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой.

Лавинный пробой возникает, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины перехода. Если за время свободного пробега электроны накапливают кинетическую энергию, достаточную для ионизации атомов в переходе, то наступает ударная ионизация, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток перехода.

Тепловой пробой обусловлен значительным ростом количества носителей зарядов в p-n-переходе за счет нарушения теплового режима. Подводимая к переходу мощностьPобр=IобрUобррасходуется на его нагрев. Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности кристаллической решетки. При плохих условиях отвода теплоты от перехода, а также при повышении обратного напряжения на переходе выше критического значения, возможен его разогрев до температуры, при которой происходит тепловая ионизация атомов. Образующиеся при этом носители зарядов увеличивают обратный ток через переход, что приводит к его дальнейшему разогреву. В результате такого нарастающего процесса переход недопустимо разогревается и возникает тепловой пробой, характеризующийся разрушением кристалла.

Увеличение числа носителей зарядов при нагреве перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на обратной ветви ВАХ при тепловом пробое появляется участок с отрицательным дифференциальным сопротивлением.

Источник

Вольтамперные характеристики (идеальная и реальная)

ВА характеристика приводится в виде взаимосвязи тока внешней цепи p-n перехода прибора и полярности напряжения на его электродах. Это соотношение можно получить экспериментально или рассчитать на основании уравнения вольтамперной характеристики.

Идеальная характеристика

Основной задачей выпрямительного диода является проведение электрического тока в одном направлении и непропускание его в обратном. Поэтому при прямой подаче напряжения (плюс подаётся на анод, а минус – на катод) идеальный прибор должен быть отличным проводником, с сопротивлением, равным нулю. При противоположном подключении, наоборот, должен иметь огромное сопротивление, став полным изолятором.

ВАХ идеального прибора

Дополнительная информация. На практике идеальная модель применяется в цифровой электронике, потому что в этой сфере имеет значение только логическая функция устройства.

Реальная ВАХ

Реальный диод, благодаря структуре полупроводника, имеет множество минусов, в сравнении с идеальным двухполюсником.

ВАХ реального прибора

Параметры промышленных п/п элементов значительно разнятся с теми, которые для удобства принимаются за идеальные. В реальности, нелинейная ВАХ показывает большие отклонения и по значениям тока, и по крутизне преобразования. Поэтому прибор может выдержать лишь нагрузки, представленные этими предельными показателями:

  • Максимальным прямым выпрямленным током;
  • Током обратной утечки;
  • Максимальным прямым и обратным напряжением;
  • Падением потенциала на p-n переходе;
  • Предельной рабочей частотой обрабатываемого сигнала.

Вольтамперная характеристика для диодных элементов – важный параметр, по которому можно определить, как будет работать прибор в электрической схеме.

Как это работает

Электронная структура полосы некоторых полупроводниковые материалов, в том числе арсенида галлия (GaAs), иметь другую энергетическую зону или поддиапазон в дополнении к валентной и зоне проводимости , которые обычно используются в полупроводниковых приборах . Эта третья зона имеет более высокую энергию, чем обычная зона проводимости, и остается пустой до тех пор, пока не будет подана энергия, продвигающая в нее электроны. Энергия исходит из кинетической энергии баллистических электронов , то есть электронов в зоне проводимости, но движущихся с достаточной кинетической энергией, чтобы они могли достичь третьей зоны.

Эти электроны либо начинаются ниже уровня Ферми, и им предоставляется достаточно длинный свободный пробег, чтобы получить необходимую энергию путем приложения сильного электрического поля, либо они инжектируются катодом с нужной энергией. При приложении прямого напряжения уровень Ферми в катоде перемещается в третью зону, и отражения баллистических электронов, начинающиеся вокруг уровня Ферми, сводятся к минимуму за счет согласования плотности состояний и использования дополнительных интерфейсных слоев, позволяющих отраженным волнам деструктивно интерферировать.

В GaAs эффективная масса электронов в третьей зоне выше, чем в обычной зоне проводимости, поэтому подвижность или дрейфовая скорость электронов в этой зоне ниже. По мере увеличения прямого напряжения все больше и больше электронов могут достигать третьей полосы, заставляя их двигаться медленнее, и ток через устройство уменьшается. Это создает область отрицательного дифференциального сопротивления в соотношении напряжение / ток.

Когда к диоду приложен достаточно высокий потенциал, плотность носителей заряда вдоль катода становится нестабильной и образуются небольшие участки с низкой проводимостью, а остальная часть катода имеет высокую проводимость. Большая часть катодного падения напряжения будет происходить на сегменте, поэтому он будет иметь высокое электрическое поле. Под действием этого электрического поля он будет двигаться по катоду к аноду. Невозможно сбалансировать населенность в обоих диапазонах, поэтому всегда будут тонкие срезы высокой напряженности поля на общем фоне низкой напряженности поля. Таким образом, на практике при небольшом увеличении прямого напряжения на катоде создается сегмент с низкой проводимостью, сопротивление увеличивается, сегмент перемещается вдоль стержня к аноду, и когда он достигает анода, он поглощается, и создается новый сегмент. на катоде, чтобы общее напряжение оставалось постоянным. Если напряжение понижается, любой существующий слой гасится, и сопротивление снова уменьшается.

Лабораторные методы, используемые для выбора материалов для изготовления диодов Ганна, включают фотоэмиссионную спектроскопию с угловым разрешением .

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки. В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником. В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: