Соединение резисторов последовательное, параллельное, смешанное. расчет на примере

Сила тока при последовательном соединении

В электрических цепях используются различные типы соединений. Основными являются последовательные, параллельные и смешанные схемы подключений. В первом случае используется несколько сопротивлений, соединенных в единую цепочку друг за другом. То есть, начало одного резистора соединяется с концом второго, а начало второго – с концом третьего и так далее, до любого количества сопротивлений. Сила тока при последовательном соединении будет одинаковой во всех точках и на всех участках. Для определения и сравнения других параметров электрической цепи, следует рассматривать и остальные виды соединений, обладающие собственными свойствами и характеристиками.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Напряжения на резисторах соответственно ​\( U_1 \)​ и ​\( U_2 \)​.

По какой из формул можно определить напряжение U на участке АВ?

1) ​\( U=U_1+U_2 \)​
2) ​\( U=U_1-U_2 \)​
3) ​\( U=U_1=U_2 \)​
4) ​\( U=\frac{U_1U_2}{U_1+U_2} \)​

2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( I=I_1=I_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)

3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R} и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1+U_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1=U_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1=U_2 \)​
2) \( I=I_1+I_2 \)
3) \( I=I_1=I_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ​\( R_1 \)​. По какой из формул можно определить общее сопротивление цепи ​\( R \)​?

1) ​\( R=R_1{}^2 \)​
2) ​\( R=2R_1 \)​
3) ​\( R=\frac{R_1}{2} \)​
4) ​\( R=\sqrt{R_1} \)​

6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ​\( R_1 \)​ и ​\( R_2 \)​ равны. Чему равно сопротивление каждого резистора?

1) 81 Ом
2) 18 Ом
3) 9 Ом
4) 4,5 Ом

7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?

1) 1/3 Ом
2) 3 Ом
3) 9 Ом
4) 27 Ом

8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ​\( R_1 \)​ = 1 Ом, ​\( R_2 \)​ = 10 Ом, ​\( R_3 \)​ = 10 Ом, ​\( R_4 \)​ = 5 Ом?

1) 9 Ом
2) 11 Ом
3) 16 Ом
4) 26 Ом

9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?

1) 9 Ом
2) 10 Ом
3) 14 Ом
4) 24 Ом

10. Если ползунок реостата (см. схему) переместить влево, то сила тока

1) в резисторе ​\( R_1 \)​ уменьшится, а в резисторе ​\( R_2 \)​ увеличится
2) увеличится в обоих резисторах
3) в резисторе ​\( R_1 \)​ увеличится, а в резисторе ​\( R_2 \)​ уменьшится
4) уменьшится в обоих резисторах

11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) сопротивление реостата 2
Б) сила тока в цепи
B) напряжение на резисторе 1

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов ​\( R_1 \)​ и \( R_2 \). Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \)​ и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \)​ и \( R_2 \)

Часть 2

13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов ​\( R_1 \)​ = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?

Что такое резистор и для чего он нужен

Резистор — это радиоэлемент, который увеличивает сопротивление цепи. Ставят его обычно для того, чтобы понизить/ограничить напряжение или ток. Есть сопротивления постоянные и переменные.

Например, светодиоды требуют небольшого тока, иначе перегревается и быстро выходит из строя. Чтобы ограничить ток, перед светодиодом поставьте сопротивление. Ток в цепи станет меньше.

Для чего нужны резисторы: для подстройки параметров питания

Постоянные сопротивления — это те, которые не меняют своего номинала в процессе работы. Если это и происходит, то считается выходом из строя.

Так выглядят переменные и постоянные резисторы

Переменные резисторы, наоборот, отличаются тем, что их сопротивление можно изменять. Они имеют бегунок или поворотную ручку, при помощи которых и изменяется номинал. На основе таких устройств делают регуляторы. Например, регулятор громкости, накала греющего элемента и т.д.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

U_1 = U_2 = U

А для токов справедливо следующее выражение:

I = I_1 + I_2

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

I_1 = \frac{U_1}{R_1} = \frac{U}{R_1}
I_2 = \frac{U_2}{R_2} = \frac{U}{R_2}

Подставим эти выражения в формулу общего тока:

I = \frac{U}{R_1} + \frac{U}{R_2} = U\medspace (\frac{1}{R1} + \frac{1}{R2})

А по закону Ома ток:

I = \frac{U}{R_0}

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}

Данную формулу можно записать и несколько иначе:

R_0 = \frac{R_1R_2}{R_1 + R_2}

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:


\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}

Задача на последовательное соединение проводников

Условие. В цепи друг за другом подсоединены две лампы и резистор. Общее напряжение равно 110 В, а сила тока 12 А. Чему равно сопротивление резистора, если каждая лампа рассчитана на напряжение в 40 В?

Решение. Поскольку рассматривается последовательное соединение, формулы его законов известны. Нужно только правильно их применить. Начать с того, чтобы выяснить значение напряжения, которое приходится на резистор. Для этого из общего нужно вычесть два раза напряжение одной лампы. Получается 30 В.

Теперь, когда известны две величины, U и I (вторая из них дана в условии, так как общий ток равен току в каждом последовательном потребителе), можно сосчитать сопротивление резистора по закону Ома. Оно оказывается равным 2,5 Ом.

Ответ. Сопротивление резистора равно 2,5 Ом.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Параллельное соединение проводников

Параллельным соединением проводников называется такое соединение, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку (рисунок 4). Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Рисунок 4. Схема параллельного соединения проводников

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки:

I = I1 + I2 + I3.

Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать:

то есть алгебраическая сумма токов для любой узловой точки цепи всегда равна нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Определение первого закона Кирхгофа может звучать и в другой формулировке, а именно: сумма токов втекающих в узел электрической цепи равна сумме токов вытекающих из этого узла.

Видео 2. Первый закон Кирхгофа

Обычно при расчете электрических цепей направление токов в ветвях, присоединенных к какой либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.

Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.

Общий ток, приходящий к точке А, равен:

Токи в каждой из ветвей имеют значения:

По формуле первого закона Кирхгофа

I = I1 + I2 + I3

или

Вынося U в правой части равенства за скобки, получим:

Сокращая обе части равенства на U, получим формулу подсчета общей проводимости:

или

g = g1 + g2 + g3.

Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.

Пример 3. Определить общее сопротивление трех параллельно включенных сопротивлений, если r1 = 2 Ом, r2 = 3 Ом, r3 = 4 Ом.

откуда

Пример 4. Пять сопротивлений 20, 30 ,15, 40 и 60 Ом включены параллельно в сеть. Определить общее сопротивление:

откуда

Следует заметить, что при подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.

Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление r цепи равно сопротивлению одной ветви r1, деленному на число ветвей n:

Пример 5. Определить общее сопротивление четырех параллельно включенных сопротивлений по 20 Ом каждое:

Для проверки попробуем найти сопротивление разветвления по формуле:

откуда

Как видим, ответ получается тот же.

Пример 6. Пусть требуется определить токи в каждой ветви при параллельном их соединении, изображенном на рисунке 5, а.

Рисунок 5. К примеру 6

Найдем общее сопротивление цепи:

откуда

Теперь все разветвления мы можем изобразить упрощенно как одно сопротивление (рисунок 5, б).

Падение напряжения на участке между точками А и Б будет:

U = I × r = 22 × 1,09 = 24 В.

Возвращаясь снова к рисунку 5, а видим, что все три сопротивления окажутся под напряжением 24 В, так как они включены между точками А и Б.

Рассматривая первую ветвь разветвления с сопротивлением r1, мы видим, что напряжение на этом участке 24 В, сопротивление участка 2 Ом. По закону Ома для участка цепи ток на этом участке будет:

Ток второй ветви

Ток третьей ветви

Проверим по первому закону Кирхгофа

I = I1 + I2 + I3 = 12 + 6 + 4 = 22 А.

Следовательно, задача решена верно.

Обратим внимание на то, как распределяются токи в ветвях нашего параллельного соединения. Первая ветвь: r1 = 2 Ом, I1 = 12 А. Вторая ветвь: r2 = 4 Ом, I2 = 6 А

Третья ветвь: r3 = 6 Ом, I3 = 4 А

Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А

Первая ветвь: r1 = 2 Ом, I1 = 12 А. Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А.

Как видим, сопротивление первой ветви в два раза меньше сопротивление второй ветви, а ток первой ветви в два раза больше тока второй ветви. Сопротивление третьей ветви в три раза больше сопротивления первой ветви, а ток третьей ветви в три раза меньше тока первой ветви. Отсюда можно сделать вывод, что токи в ветвях при параллельном соединении распределяются обратно пропорционально сопротивлениям этих ветвей. Таким образом, по ветви с большим сопротивлением потечет ток меньший, чем по ветви с малым сопротивлением.

Для двух параллельных ветвей можно также, конечно, пользоваться данной выше формулой.

Однако общее сопротивление проводника при параллельном соединении в этом случае легче подсчитать по формуле:

или окончательно:

Как происходит подключение лампочек последовательно или параллельно

Чтобы понять, как подключать лампочки — последовательно или параллельно — важно рассмотреть преимущества и недостатки обоих соединений, которые выплывают только на практике. Наиболее часто встречающийся вариант — последовательное и параллельное включения комбинируются по-разному. Наиболее часто встречающийся вариант — последовательное и параллельное включения комбинируются по-разному

Наиболее часто встречающийся вариант — последовательное и параллельное включения комбинируются по-разному

Последовательно

Подобное соединение редко применяется в квартирах или домах. Для бытового использования больше подходит смешанный способ. Последовательно соединяют лампочки, если сооружают гирлянду или монтируют свет в длинном коридоре.

При подключении лампочек друг за другом следует учитывать некоторые особенности:

  • через устройства будет протекать ток одинаковой силы;
  • если произойдет резкий спад напряжения, воздействие распределится равномерно на все объекты цепочки;
  • также равномерно распределяется мощность на каждый элемент цепи.

Обратите внимание! Из-за последовательности спайки и равномерного распределения мощности стандартные лампочки на 220 В выдают свет не в полную силу. Чем больше ламп подключено в сеть, тем меньше света они будут производить. Неравномерность свечения обусловлена различной мощностью при одинаковой силе тока

Неравномерность свечения обусловлена различной мощностью при одинаковой силе тока

Если в схему встраивать лампы накаливания с отличающейся мощностью, ярче горит та, что имеет меньшую энергоемкость (обладает большим внутренним сопротивлением). Это объясняется тем, что напряжение при более высоком сопротивлении увеличивается.

Если лампочки в последовательной схеме горят, значит система исправна полностью

Последовательное соединение лампочек в электросети обеспечивает более щадящий режим работы для приборов благодаря равномерно распределяемой мощности (нагрузке). Кроме этого, для фактического соединения потребуется меньшее количество кабеля (по длине).

  • при выходе из строя одного элемента обесточивается вся система;
  • при подключении ламп накаливания разной мощности невозможно обеспечить равномерное освещение помещения.

Важный момент — в последовательную электрическую схему нельзя включать энергосберегающие (светодиодные) лампочки. Для их правильной работы требуется стабильное напряжение в 220 В, подаваемое равномерно на каждый элемент (параллельное соединение).

Параллельно

Основное отличие параллельной схемы соединения элементов — равнозначная подача питания к каждой лампочке в сети независимо от их общего количества. Это значит, что к каждой лампе подается свой ток. Провода, соединяющие детали цепи, подключаются параллельным образом.

Схема для параллельного подключения лампочек отображает тип соединения проводников к элементам

Преимущества данной техники сборки электрической цепи:

  • если один элемент сгорит (лампа или кабель), остальные продолжат работать в прежнем режиме;
  • лампочки накаливания горят настолько мощно, насколько позволяют их характеристики;
  • можно включать в цепь энергосберегающие элементы;
  • чтобы подключить новую лампу в комнате, достаточно вывести из соединения потолочной люстры необходимое число фазных проводников и соединить их в группу.

Основной недостаток — большой расход материала. До каждой точки необходимо вести отдельный провод, что увеличивает протяженность проводов в несколько раз (по сравнению с последовательным соединением).

Обратите внимание! В большинстве случаев используют смешанное соединение проводов и элементов. Основой является параллельное подключение нескольких распредкоробок последовательного типа. На отдельных ветках лампочки соединяют последовательно (например, в длинном коридоре, над кроватью, в других подобных местах жилого помещения)

На отдельных ветках лампочки соединяют последовательно (например, в длинном коридоре, над кроватью, в других подобных местах жилого помещения).

Несколько нюансов монтажа

Отдельно можно сказать о том, как соединяются светодиоды между собой. Каждый кристалл заключен в корпус, из которого идут выводы. На выводах зачастую стоят отметки «-» или «+», что означает соответственно подключение к катоду и к аноду прибора.

Опытные радиолюбители даже на глаз могут определить полярность, поскольку катодный вывод чуть длиннее и чуть больше выступает из корпуса. Подключение светодиодов необходимо осуществлять, строго соблюдая полярность.

Если речь идет о , то в процессе монтажа довольно часто применяют пайку. Для этого используют маломощный паяльник, чтобы ни в коем случае не перегреть кристалл. Время пайки не должно превышать 4-5 секунд. Лучше, если это будет 1-2 секунды. Для этого паяльник разогревают заранее. Выводы сильно не сгибают. Схему собирают на площадке из материала, который хорошо отводит тепло.

Проделаем еще один опыт. Возьмем несколько одинаковых ламп и включим их одну вслед за другой. Такое соединение называют последовательным. Его следует отличать от ранее рассмотренного параллельного соединения.

Генератор питает две последовательно включенные лампы. На схеме показаны амперметр и три вольтметра: один измеряет общее напряжение, два других измеряют напряжение на каждой из ламп

При последовательном соединении нескольких участков цепи (скажем, нескольких ламп) ток в каждом из них одинаков.

Итак, возьмем две 100-ваттные лампы, такие же, какие были рассмотрены в предыдущем опыте, и включим их последовательно к генератору с напряжением 100 В.

Лампы будут еле светиться, их накал будет неполным. Почему? Потому что напряжение источника (100 В) разделится поровну между обеими последовательно включенными лампами. На каждой из ламп теперь окажется напряжение уже не 100, а только 50 В.

Напряжение на лампах одинаково потому, что мы взяли две одинаковые лампы.

Если бы лампы были неодинаковы, общее напряжение 100 В разделилось бы между ними, но уже не поровну: например, на одной лампе могло бы оказаться 70 В, а на другой 30 В.

Как мы увидим впоследствии, более мощная лампа получает при этом меньшее напряжение. Но ток в двух последовательно включенных даже разных лампах остается одинаковым. Если одна из ламп перегорит (порвется ее волосок), погаснут обе лампы.

Опыт показывает, что общее напряжение на последовательных участках цепи всегда равно сумме напряжений на отдельных участках.

Лампы горели нормально, когда ток был равен 1 А, но для этого нужно было приложить к каждой из них напряжение 100 В. Теперь напряжение на каждой из ламп меньше 100 В, и ток будет меньше 1 А. Он будет недостаточным, чтобы раскалить нить лампы.

Будем теперь регулировать работу генератора: будем повышать его напряжение. Что при этом произойдет? Вместе с увеличением напряжения увеличится ток.

Лампы начнут ярче светиться. Когда, наконец, мы поднимем напряжение генератора до 200 В, на каждой из ламп установится напряжение 100 В (половина общего напряжения) и ток ламп увеличится до 1 А. А это и есть условие их нормальной работы. Обе лампы будут гореть с полным накалом и потреблять нормальную для них мощность — 100 Вт. Общая мощность, отдаваемая при этом генератором, будет равна 200 Вт (две лампы по 100 Вт каждая).

Можно было бы включить последовательно не две лампы, а десять или пять. В последнем случае опыт показал бы нам, что лампы будут гореть нормально, когда общее напряжение будет увеличено до 500 В. При этом напряжение на зажимах каждой лампы (все лампы мы предполагаем одинаковыми) будет 100 В. Ток в лампах будет и теперь равен 1 А.

Итак, мы имеем пять ламп, включенных последовательно; все лампы горят нормально, каждая из них при этом потребляет мощность 100 Вт, значит, общая мощность будет равна 500 Вт.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: