Какие диоды используются в фонариках?
Мощные светодиодные фонари начались с устройств с матрицей 5-мм.
LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.
5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.
Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.
Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.
В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.
Поисковый фонарь на 5мм светодиодах
Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.
В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.
Часть 1. Управление яркостью светодиода
Схема
Соберем вот эту схему:
Обратите внимание, что мы подключаем LED к цифровому пину 11, которые поддерживает ШИМ. Если подключить к пину 12, то желаемого результата мы не получим
Скетч
/******************************************************* * (C) jarduino.ru 2020 * Изучение ардуино через опыты. * * Опыт №3.1. Управление яркостью светодиода * * ****************************************************/ // Глобальные константы и переменные const int pinLed = 11; // порт для светодиода const int nDelay = 2; // задержка в мсек. между изменением яркости const int nLedMin = 0; // минимальная яркость // настройка платы void setup() { pinMode(pinLed, OUTPUT); } // основной цикл void loop() { static int i = nLedMin; // статическая переменная для хранения текущей яркости светодиода // постепенной увеличиваем яркость светодиода: while (i < 255) { analogWrite(pinLed, i); delay(nDelay); ++i; } // постепенно уменьшаем яркость светодиода: while (i > nLedMin) { analogWrite(pinLed, i); delay(nDelay); —i; } }
Схема подключения
Прежде чем начать сборку схемы с диммером, необходимо проверить мощностные характеристики. Мощность светодиодной ленты не должна превышать значения, указанные на корпусе устройства (лучше, если эти показатели будут меньше). Если диммер рассчитан на управление мощностью в 150 Вт, идеальным вариантом будет, если LED-лента будет потреблять около 147 Вт. Это поможет прослужить прибору очень долго.
Что касается непосредственно монтажа, здесь необходимо соблюдать общепринятый порядок работы для всех электрических сетей:
- Первоочередно нужно отключить питание сети, в контуре которой будет производиться установка. Отсутствие напряжения проверяется тестером или мультиметром. Необходимо убедиться в отсутствии возможности случайной подачи тока, при необходимости вывесить предупреждающий знак.
- В помещении устанавливается светодиодная лента, а в монтажную коробку ставят диммер с использованием соответствующих крепежных материалов и инструментов.
- К клеммам с маркировкой L и N нужно подключить фазный и нулевой провод соответственно. Определить положение питающих проводников необходимо до момента отключения сети.
- По окончании монтажа проверяют работоспособность собранной схемы.
Одноцветная
Светодиодная лента питается от источника постоянного тока напряжением 12 В, а бытовая сеть — источник переменного тока с напряжением 220 В. Диммируемая светодиодная лента запитывается через преобразователь 220/12 В. На вход подключается нуль и фаза сети, а на выход — светодиодная лента.
Важно не перепутать полярность проводников. При неправильном подключении лента просто не будет работать. Чтобы подключить светодиодную ленту длиной более 5 метров, можно воспользоваться несколькими вариантами монтажа:
Чтобы подключить светодиодную ленту длиной более 5 метров, можно воспользоваться несколькими вариантами монтажа:
- Использовать несколько блоков питания. Для каждой ленты отдельный источник питания.
- Один блок питания. Каждая лента подключается параллельно друг другу к выходу преобразователя.
Важно! Блок питания должен обладать достаточной мощностью, чтобы питать несколько светодиодных лент
RGB
Способ монтажа точно такой же, как и с монохромной лентой, с небольшим отличием. После блока питания устанавливают RGB-контроллер, который позволяет производить регулирование цветности светодиодной ленты
Важно учитывать мощность контроллера при подборе количества RGB-лент
Теперь непосредственно о подключении. К клеммам V+ и V- подключают пониженное напряжение от блока питания. К контактам на выводе подключают:
- R (red) — красный провод;
- G (green) — зеленый проводник;
- B (blue) — синий провод;
- V+ — желтый общий провод.
Каждый провод, кроме желтого, отвечает за соответствующий цвет ленты. Необходимо безошибочно подключить каждый проводник к своему гнезду. Ничего плохого не произойдет, но цвета будут отображаться неверно.
Необходимость в регуляторах яркости
Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.
- Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
- Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
- Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
- Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.
В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.
Как выбрать усилитель для светодиодной ленты
На сегодняшний день все более популярной является подсветка светодиодными лентами. Такие ленты являются экономными и создают особенную атмосферу разноцветного или монохромного сияния.
При монтаже светодиодной ленты нужны блоки питания 12в. Если есть желания управлять лентой на расстоянии, используется светодиодный диммер, RGB лента управляется RGB контроллером. При сложных схемах подключения используется усилитель, который усиливает сигнал диммера или контроллера для управления светодиодной лентой.
Для понимания какой усилитель нужен для определенной схемы подсветки – рассмотрим некоторые разновидности. Для того чтобы купить усилитель, необходимо понимать подойдет ли он в схему подсветки.
Виды светодиодных усилителей:
RGB усилитель, используется для RGB светодиодных лент, также есть возможность для подключения монохромных светодиодных лент через один канал. RGB усилитель имеет на входе «input», и на выходе «output» обозначения каналов – «R» – красный цвет, «G» – зеленый цвет, «B» – синий цвет, «V+» – общий плюс подключения. Также предусмотрены контактные клеммы для питания 12V, которое обозначается как «Power» и может быть выполнено под разъем 5,5мм или же в виде зажимных контактов, или выведенных проводов.
Усилители для RGB светодиодных лент можно встретить разной мощности. Среди популярных выделяют на 12A, 18A, 24A, 30A, 36A. Они могут быть выполнены в пластиковом или алюминиевом корпусе, также можно встретить мини RGB усилители, которые выделяются своим не большим габаритным размером, и выполнены в виде плати, которая обтянута термоусадкой.
Монохромные усилители. Данные усилители предусмотрены для подключения монохромной ленты. На входе «input», и и на выходе «output» имеют обозначения «V+» и «V-», также контакты «Power» для подключения 12В от блока питания.
Для подключения светодиодной ленты 14,4 Вт на метр длинной 20 метров и RGB контроллером на 12А понадобится усилитель на 12А или же с запасом мощности на 18А. Почему именно так? Рассмотрим варианты подключения.
Какой длинны должна быть лента, чтобы управлять можно было ей с помощью RGB контроллера на 12А? Все достаточно просто, берем в расчет ленту RGB на 60 светодиодов, которая потребляет 14,4 Вт на метр. Соответственно, 12А (усилитель) умножаем на рабочее напряжение 12В и получаем 144 Вт, это показатель мощности усилителя. Теперь 144 Вт разделим на 14,4 Вт и получим 10 метров – максимально возможная длинна ленты для подключения к RGB контроллеру на 12А. Но, если светодиодной ленты для освещения нужно проложить 20 метров, а контроллера достаточно только на 10 метров, в схему включают RGB усилитель.
Какой же мощности он должен быть? Для правильного выбора RGB усилителя примем во внимания расчеты по RGB контроллеру, исходя из этого (10 метров х 14,4Вт / 12В рабочее напряжение) получим суммарный выходной ток 12А. Усилителя на 12А или 144Вт будет достаточно для подключения оставшихся 10 метров светодиодной ленты.
RGB усилитель на 12А имеет выходной ток по 4А на канал, исходя из этого, следует, что если подключать к этому усилителю монохромную ленту, то ее возможно подключить уже не 10 метров, а 3 метра, так как будет использоваться только один канал.
Применение светодиодных усилителей дает множество преимуществ, среди которых:
- возможность подключения большого количества светодиодной ленты в одну схему;
- значительное снижение нагрузки на контроллер;
- возможность использование большое количество малогабаритных блоков питания, если это нужно при монтаже;
- равномерное управления светодиодными лентами.
К недостаткам отнести можно только одно, это то что в данных схемах подключения используется много компонентов. Но в ситуациях, когда монтаж возможен только с усилителями, это не недостаток, а хорошее решение применения осветительной системы.
Покупай выгодно в Foton.ua.
В нашем интернет магазине Вы можете не только купить RGB усилители для светодиодных лент RGB, также можете купить монохромные усилители для одноцветных светодиодных лент. Менеджеры помогут подобрать необходимое оборудование для Вашей схемы освещения но низким ценам и высоком качестве. Доставим по всей территории Украины (Киев, Харьков, Львов, Днепр, Одеса).
Посмотреть все вопросы данной категории
Диммер с выключателем
Также популярностью пользуется схема немного посложнее, но, безусловно, очень удобная, особенно для применения в спальных комнатах – на разрыв фазы перед диммером устанавливается выключатель. Светорегулятор монтируется около кровати, а переключатель света, как и положено, при входе в комнату. Теперь лёжа в постели есть возможность регулировки светильников, а выходя из комнаты свет можно полностью отключить. Когда вернётесь в спальню и нажмёте на входе выключатель, лампочки загорятся с той же яркостью, с которой горели в момент отключения.
Аналогично проходным выключателям подсоединяются и проходные диммеры, что даёт возможность управления освещением из двух точек. От каждого места установки диммеров в распределительную коробку должно подходить по три провода. На входной контакт первого диммера подаётся фаза из питающей сети. Выходной контакт второго диммера подключается к осветительной нагрузке. А две пары оставшихся проводов соединяются между собой перемычками.
Необходимость в регуляторах яркости
Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.
- Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
- Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
- Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
- Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.
В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.
Создание платы
Мы рассмотрим самый бюджетный вариант – вытравку платы в соляном растворе, но прежде на неё необходимо будет наклеить проект, который вы можете создать в программе по желанию. Дальнейшая сборка не несёт никаких трудностей и секретов, необходимо будет воспользоваться панельками под оптроны и мостовые выпрямители. Также, при написании текста, для разметки элемента, его стоит делать зеркальным, так как при ЛУТе, отпечатавшийся рисунок примет правильный вид на меде, и перенесется так, что вы без проблем прочитаете все необходимые данные.
Хорошим выбором станет TIC206, который выдаст добротных 6 ампер. Но здесь стоит учесть, что те проводники, которые установлены на плате, просто не выдержат такую силу тока, поэтому дополнительно стоит припаять провод на проводник симистора у разъемов, а вторую часть – к другим разъемам.
Также, при наличии оптрона H11AA11, мостовой выпрямитель можно не использовать, ведь в нем уже имеются два не параллельных диода, а также возможность работы с переменными токами. Совместимость с выводами 4N25 позволяет просто вставить его к припою с двумя перемычками, находящимися между 5 и 7 резистором, на нашей схеме.
Во втором варианте схема будет выглядеть так:
Создание подсветки салона с 2-мя режимами яркости
Подсветку салона автомобиля можно организовать разными методами: будь то обычная светодиодная лента, на скорую руку, прилепленная клейкой лентой к обшивке потолка салона или же обычная сборка с димером, аккуратно спрятанная в плафон интерьера. В данной статье позвольте привести вам пример организации нескольких вариантов подсветки.
Все схемы проверены и работают безотказно – естественно, если сборка осуществлена грамотно. Ниже вы можете просмотреть видео, на котором ярко продемонстрирован принцип работы схем.
Давайте приступим к работе.
1. Стабилизатор напряжения на транзисторе LM-317
Первая схема была реализована на базе транзистора LM-317, который играет роль стабилизатора напряжения в схеме.
Обратимся к самой схеме.
Мощность данной микросхемы составляет всего 1.5 единиц, а при условии установки небольшого радиатора, зная, что ток через эту сборку из 3-х диодов – 20 мА (0.02 А) кол-во цепочек можно легко рассчитать. Для сборки из 10-ти – 20ти подобных «подсхем» радиатор не нужен.
При правильной сборке – устройство выглядит довольно компактным.
Важно!!! Сборка элементов, пайка и коммутация устройства должно осуществляться, исключительно имея хотя бы базовые навыки и умения в электротехнике. В противном случае неправильная сборка может: минимум просто не включиться, максимум – перегорит предохранитель в автомобиле
Входы и выходы сборки можете найти на схеме, приведенной выше.
2. Плавное включение-выключение подсветки
Вторая схема довольно-таки распространена среди «дежурных самоделок» наших умельцев, она не слишком сложна в исполнении и вполне работоспособна.
Обратимся к схеме.
В сборке использован полевик (полевой транзистор), который и управляет каналом диодов. Отсюда следует, что номинальные показатели транзистора должны быть выше, чем у предыдущей сборки. По желанию в сборке можно использовать любое кол-во светодиодов – это
никаким образом не влияет на интервал розжига и затухания. Основным требованием является, то, что мимо ключа зажигания должно проходить +12 вольт. Схем применима как для обычных ламп накаливания, так и к светодиодным лентам.
Сборка такая же компактная, как и в предыдущем примере.
Подсветка с регулируемой яркостью.
Немного отступления и теории. Данная сборка особо подойдет людям, которые особо не приветствуют излишеств в подсветках, но ценят в вещах практичность. Схема, приведенная ниже, имеет два режима яркости – «ярко и очень ярко», то есть режим «День» и режим «Ночь».
В сборке применялся переменный резистор 5К:
– обозначение на схеме. Данный вид резисторов позволяет регулировать свое сопротивление, тем самым меняя яркость лампочек в подсветке. Регулирование можно осуществить один раз, но и можно данный элемент вывести за пределы сборки и регулировать по ситуации.
Режим «НОЧЬ»
Режим «ДЕНЬ»
НЕ советуется совмещать светодиодную ленту и стабилизаторы L78xx – серий, где ХХ – номинальные значения –в автомашине. Например, сериям 7812 остро будет не хватать напряжения от бортовой сети, что прямо пропорционально влияет на яркость светодиодов. А для 7809 – бортового напряжения будет слишком даже достаточно, но для таких стабилизаторов необходимо будет строить иные диодные цепочки.
ВНИМАНИЕ!!! Схемы с диодами постоянные для дома кардинально отличаются от схем, собранных для автомобиля. Ведь в домашних условиях, для подобных конструкций, можно подобрать блоки питания подходящих диапазонов, а в автомашине – иметь дело с уже существующим напряжением
Автор; Вадим Корнелюк Ровно, Украина
← Предыдущая запись
Следующая запись →
Стоит ли использовать диммер для светодиодной ленты?
Однозначно – стоит. Установка такого устройства под силу даже непрофессионалу, но сам светорегулятор многократно расширяет функции и возможности led-ленты. Например, можно отказаться от большого количества светильников разной мощности, поскольку одна и та же лента будет светить с разной яркостью, заменяя и большую люстру, и маленький ночник.
Подобное освещение очень удобно в детской комнате – когда ребенок уснет, можно будет просто приглушить свет до минимума, не опасаясь ни за проводку, ни за то, что чадо проснется ночью в темноте и испугается.
Любителям домашних вечеринок однозначно придутся по душе световые эффекты, которые можно создать при помощи диммера с аудио-входом. И это лишь малая часть способов применения диммеров и светодиодных лент в обычных квартирах и домах.
Устройство с функцией задержки включения
Перейдем непосредственно к реле времени. В этой статье мы разберем с одной стороны схему максимально простую, но с другой стороны не имеющую гальванической развязки.
Устройство является источником опасности, так как в нем присутствует опасное для жизни напряжение. Такое устройство в своей конструкции имеет 15 элементов и делится на две части:
- Узел формирования питающего напряжения или блок питания;
- Узел с временным контроллером.
Блок питания работает по бестрансформаторному принципу. В его конструкцию входят компоненты R1, C1, VD1, VD2, C3 и VD3. Само напряжение питания 12 В формируется на стабилитроне VD3 и сглаживается конденсатором C3.
Во вторую часть схемы включены интегральный таймер с обвеской. Роль конденсатора C4 и резистора R2 мы описали выше, и теперь по указанной ранее формуле мы можем вычислить значение времени задержки реле:T = 1.1 * R2 * C4 = 1.1 * 680000 * 0.0001 = 75 секунд ≈ 1.5 минуты Изменив номиналы R2-C4, вы можете самостоятельно определить необходимое вам время задержки и своими руками переделать схему на любой временной интервал. Принцип работы схемы следующий. После включения устройства в сеть и появления напряжения питания на стабилитроне VD3, а, следовательно, и на микросхеме NE555, конденсатор начинает заряжаться до тех пор, пока напряжение на входах 2 и 6 чипа NE555 не опустится ниже 1/3 от питающего, то есть, примерно до 4 В. После наступления этого события на выходе OUT появится управляющее напряжение, которое запустит (включит) реле K1. Реле, в свою очередь, замкнет нагрузку HL1.
Диод VD4 ускоряет разрядку конденсатора C4 после отключения питания для того, чтобы после быстрого повторного включения в сеть устройства время сработки не сократилось. Диод VD5 гасит индуктивный выброс от K1, чем защищает схему. C2 служит для фильтрации помех по питанию NE555.
Если правильно подобраны детали и без ошибок выполнен монтаж элементов, то устройство в проведении настройки не нуждается.
При испытании схемы, чтобы не выжидать полторы минуты, необходимо сопротивление R1 снизить до значения 68–100 кОм.
Вы, наверное, обратили внимание, что в схеме нет транзистора, который бы включал реле K1. Сделано это не из экономии, а по причине достаточной надежности выхода 3 (OUT) микросхемы DD1
Микросхема NE555 выдерживает на выходе OUT максимальную нагрузку до ±225 мА.
Такая схема идеально подходит для контроля времени работы вентиляционных приборов, установленных в санузлах и других подсобных помещениях. За счет ее наличия вентиляторы включаются только при условии присутствия в помещении в течение длительного времени. Такой режим значительно снижает расход электрической энергии, и продлевает срок службы вентиляторов за счет меньшего износа трущихся деталей.
В чем различия диммеров?
Если вы собрались использовать выключатель с регулировкой яркости, сперва нужно узнать какие они бывают. И вообще все ли светодиодные лампы можно диммировать?
Диммеры различаются по следующим критериям:
- По типу монтажа;
- по исполнению и способу управления;
- по способу регулирования.
Давайте разберемся по подробнее с каждым из них.
По типу монтажа
Для наружного монтажа – накладной выключатель с диммером для светодиодных ламп. Для установки такого прибора не нужно высверливать в стене нишу, он просто крепится сверху на стену. Очень удобно использовать в тех случаях, когда интерьер не в приоритете или проложена наружная проводка.
Для внутреннего монтажа – отлично впишутся в любой интерьер, как например этот.
Для монтажа на DIN рейку весьма специфичны и сперва может показаться, что они не практичны. Однако этот регулятор освещения для светодиодных ламп работает с пультом дистанционного управления, при этом спрятан от посторонних глаз в электрощите.
По исполнению
По исполнению регулятор света для светодиодных и ламп накаливания может быть:
- Поворотным;
- поворотно-нажимного типа;
- кнопочным;
- сенсорным;
Поворотный – один из самых простых вариантов регулятора яркости светодиодной лампы, выглядит незатейливо обладает простейшим функционалом.
Поворотно-нажимной выглядит практически также, как и поворотный. Благодаря своей конструкции, при нажатии на него зажигается свет с такой яркостью, какая была установлена при последнем включении.
Кнопочный регулятор для светодиодного освещения выглядит уже более технологично и органично впишется в современную квартиру. Как например этот выключатель с регулятором яркости для светодиодных ламп.
Сенсорные модели и вовсе могут быть совершенно различны – начиная от светящихся кружочков, заканчивая ровными одноцветными панелями для регулировки напряжения светодиодных ламп.
По способу регулировки
Диммеры бывают разные не только по их исполнению, но и по принципу работы. Это касается именно диммеров переменного тока.
Первый тип диммеров более распространённый и дешевый, по причине простоты своей схемы – это диммер с отсечкой по переднему фронту (англ. leading edge). Немного дальше будет подробно рассмотрен его принцип работы и схема, для сравнения взгляните на вид напряжения на выходе такого регулятора.
По графику видно, что на нагрузку подается остаток полуволны, а её начало срезается. Из-за характера включения нагрузки, в электросетях наводятся помехи, что мешает работе телевизоров и других устройство. На лампу подаётся напряжение установленной амплитуды, а затем оно затухает, когда синусоида переходит через ноль.
Можно ли использовать leading edge диммер для диодных ламп? Можно. Светодиодные лампы с диммером этого типа будут хорошо поддаваться регулировке, только если они изначально для этого созданы. Об этом свидетельствуют символы на её упаковке. Они еще называются «диммируемые».
Второй тип работает иначе, создает меньше помех и лучше работает с разными лампочками – это диммер с отсечкой по заднему фронту (англ. falling edge).
Регулировка светодиодных ламп с диммерами такого типа происходит лучше, а его конструкция лучше поддерживает недиммируемые источники света. Единственный недостаток – эти лампы могут регулировать свою яркость не с «нуля», а в определенном диапазоне. При этом диммируемые светодиодные лампы – просто великолепно регулируются.
Отдельное слово можно сказать о готовых светодиодных светильниках с регулировкой яркости. Это отдельный класс осветительных устройств, которые не нуждаются в установке дополнительных регуляторов, а имеют его в своей конструкции. Их регулировки производятся с помощью кнопок на корпусе или с пульта.
Принцип широтно-полюсной модуляции (ШИМ)
Изменения мощности питающего напряжения при применении шим-контроллера обеспечивается благодаря подаче на коммутирующий элемент (в случае со светодиодами – полевой транзистор, симистор либо динистор) сигналов с изменяющейся скважностью. S=T/T1, где Т – период импульсов, Т1 – период положительного фронта
S=T/T1, где Т – период импульсов, Т1 – период положительного фронта.
В ШИМ-контроллере импульсы следуют с постоянной частотой, изменяется лишь длительность пауз.
Ниже представлена принципиальная схема ШИМ-контроллера:
Увеличение ширины импульса увеличивает время поступления тока через транзистор к нагрузке, следовательно, и пропускаемый ток. Частота следования импульса значительно выше той, которую способен уловить глаз, обычно 100-200Гц, потому мерцания светодиодов мы не ощущаем. Преимущество регуляторов нагрузки на основе ШИМ-контроллеров, значительно более высокий КПД сравнительно с резистивными, поскольку избыточная нагрузка гасится, а не потребляется.
Подключение диммера в схему питания светодиодной лампы
Существует два варианта подключения:
- Схема подключения перед драйвером питания, когда диммируется переменное напряжение;
- Подключение после драйвера питания, с ШИМ-регуляцией постоянного напряжения.
На симисторе
Такой диммер будет работать от напряжения сети 220В напрямую, схема отличается относительной простотой, поэтому собрать ее под силу даже начинающему радиолюбителю. Принцип регулирования напряжения в этом диммере заключается в отсекании определенного полупериода синусоиды, благодаря чему снижение электрического параметра приводит к реальной экономии электроэнергии.
Посмотрите на схему подключения, симистор – это электронный ключ, который управляется сигналами с динистора, включенного во времязадающую R — C цепочку.
Схема диммера на симисторе
Работа схемы заключается в следующем: после подключения фазы 220В к диммеру, на времязадающую цепочку C1 – R1 – R2 будет подано напряжение, так как динистор VS1 закрыт, ток протекает только через конденсатор и резисторы.
В зависимости от установленного поворотным резистором омического сопротивления будет зависеть и величина тока. От величины тока зависит и скорость заряда конденсатора C1, при достижении нужной величины потенциала на котором произойдет открытие динистора.
Через цепь открывшегося динистора на симистор VS2 подается сигнал открытия, срабатывает ключ, пропускающий определенную часть полупериода к нагрузке. Ток удержания в симисторе не возникает, поэтому с разрядом конденсатора вся цепь переходит в исходное состояние вплоть до следующего полупериода, который откроет ключ и подаст на нагрузку потенциал.
Изменение синусоиды
Как видите, такая схема диммера осуществляет регулировку яркости «обрезая» форму синусоиды до определенного импульса, уменьшая и величину напряжения, и его действующее значение. В виду нестабильного колебания кривой такую модель светорегулятора однозначно можно подключать к лампам накаливания, поскольку они не восприимчивы к форме напряжения. Что касается светодиодных и люминесцентных моделей, их нужно тестировать на уже готовом диммере.
Чтобы изготовить такой диммер для практического использования, лучше взять печатную плату. Так как при стационарной установке при регулировании напряжения вам понадобится жесткое крепление к конструкции. Ее можно как заказать, так и изготовить самостоятельно.
Процесс сборки состоит из следующих этапов:
Перенесите эскиз на фольгированную плату, в местах монтажа соответствующих деталей сделайте разметку. Дорожки наведите нитрокраской и протравите плату диммера в хлорном железе.
Протравите плату
В процессе травки плату нужно переворачивать, а после окончания, достаньте и полудите ее, промойте спиртом и просверлите отверстия для ножек.
Сделайте отверстия
Поместите ножки радиодеталей в просверленные отверстия под них.
Поместите ножки радиодеталей в отверстия
Если вы разметили монтажные площадки, придерживайтесь данной разметки.
Разогрейте паяльник и нанесите слой олова с обратной стороны платы диммера.
Припаяйте ножки радиодеталей
Протестируйте собранную конструкцию на лампе накаливания, если она работает как надо, можете собирать диммер в корпус.
Опробуйте работоспособность на лампе накаливания