Каким током и напряжением следует заряжать аккумулятор
Напряжение заряда у АКБ, изготовленных по разным технологиям, отличается. Но есть общие требования, которые применимы к большинству аккумуляторов.
Самая оптимальная и безопасная зарядка — это выставить ограничение напряжения 14.7В, а силу тока 1/10 от ёмкости АКБ. Допустим ёмкость равна 70 (А*ч), тогда ток, выставляемый при заряде, должен быть 7 ампер.
Качество заряда АКБ и сила тока имеют обратную зависимость, то есть, чем меньше сила тока, тем качественнее будет заряжен аккумулятор и тем медленнее будет происходить его зарядка. Если есть время, то лучше выбрать силу тока еще меньше в размере 1/20 от емкости аккумулятора. Например, для батареи ёмкостью 70 (А*ч) это будет сила тока в 3.5А.
Для необслуживаемых батарей силу тока выбирают не более 1/20 от емкости аккумулятора. Другими словами, если ёмкость равна 60 Ампер*час, то сила тока должна быть 3А. Такая низкая сила тока обусловлена самой конструкцией АКБ. Так как АКБ необслуживаемый, то при кипении электролита выделяемому газу некуда будет выходить и батарею может разорвать давлением газа. Чтобы избежать кипения электролита и выбирают небольшие токи для зарядки.
По мере заряда напряжение будет расти до 14.7 В, а ток будет неизменен пока напряжение не достигнет этого значения. После того как напряжение достигнет значения 14.7В оно перестанет расти так как ограничено настройками ЗУ. При продолжении заряда теперь напряжение ограничено, при этом по мере продолжения заряда будет снижаться сила тока, пока не достигнет значения свидетельствующего об окончании заряда (примерно 1-0.5А). Если в течении двух трех часов сила тока не снижается, то можно считать, что аккумулятор заряжен полностью на данном режиме зарядки.
После окончания зарядки отключаем ЗУ и даем АКБ несколько минут постоять, чтобы электролит перестал выделять газ. Производим замеры плотности.
Если плотность электролита не достигла своих оптимальных значений 1.27-1.28 г/см3, то можно попробовать её поднять с помощью зарядки на более высоком напряжении. Для этого устанавливаем ограничение напряжения в 16.3В, а силу тока не более 1/20 от ёмкости аккумулятора. Силу тока можно выставить ещё меньше до уровня 0.5А. Так АКБ будет медленнее заряжаться, но таким образом снижаем вероятность кипения электролита, а значит риск разрушения пластин батареи. В таком режиме зарядки выдерживаем от одного до четырех часов. Время зависит от того, как быстро плотность электролита придёт в норму.
Если для зарядки используется автоматическое зарядное устройство, то оно само подбирает напряжение и силу тока.
Внимание!
Напряжение близкое к 16В подходит не для всех типов АКБ. Таким напряжением можно их “убить”
Гелиевые и гибридные батареи могут максимум выдерживать напряжение до 14.4В! Лучше всего максимальное напряжение заряда посмотреть на корпусе или в паспорте АКБ. Обозначаться оно будет как cycle use , а максимальная сила тока как max initial current.
Устройство
Прямоугольный корпус состоит из нескольких секций, которые герметично отделены друг от друга и заполнены серной кислотой — электролитом. В нее погружены токоотводящие решетки электродов, разделенные между собой сепараторами. Каждый электрод включает в себя несколько пластин, соединенных параллельно. Соединение однополярных электродов между отсеками батареи выполняется последовательно.
Основные элементы АКБ:
- Корпус АКБ. Выполнен из кислотостойкого диэлектрического полимера (полиэтилен, полипропилен и подобные им).
- Токоотводящая решетка отрицательного электрода (часто изготавливается из губчатого свинца).
- Сепаратор для отделения решетки положительного и отрицательного электродов (пористый кислотостойкий диэлектрик).
- Токоотводящая решетка положительного электрода, выполненная из двуокиси свинца.
- Баретка. Параллельно соединяет пластины одной полярности.
- Опорные элементы для создания зазора между электродами и дном корпуса. Зазор позволяет оседать отслоившемуся реагенту решетки.
- Крышка.
- Заглушка заливного отверстия.
- Положительный вывод.
- Перемычка. Соединяет блоки пластин одной полярности.
- Отрицательный вывод.
Базовая конструкция свинцовых АКБ с момента изобретения не претерпела существенных изменений. Некоторые усовершенствования коснулись покрытия токоотводящих пластин, структуры и материала сепараторов, а также консистенции электролита.
Необслуживаемая свинцово кислотная батарея
На положительных пластинах обычной свинцово кислотной АКБ при завершении зарядки образуется кислород, который впоследствии может перераспределяться на отрицательных решетках. Однако большая часть кислорода не успевает раствориться в электролите и испаряется с его поверхности, после чего выводится через вентиляционные отверстия.
В необслуживаемых свинцово кислотных аккумуляторах эта проблема решена за счет микроскопических полостей в сепараторе, которые способствуют практически моментальному газообмену между пластинами и последующей рекомбинации выделяющихся газов. Благодаря этому возможно изготовление устройств с герметизированным корпусом. Электролит в них практически не испаряется, нет надобности доливать воду, а срок службы больше, чем у обслуживаемых аналогов.
Аккумуляторы с гелеобразным электролитом и AGM
Распространение получили две технологии удержания газов в электролите – AGM и GEL. В сепараторах AGM-устройств используют пористое стекловолокно – стекломат. Второй вариант подразумевает применение гелеобразного электролита. Основным реагентом в обоих случаях является десятипроцентный раствор H2SO4.
При нормальной эксплуатации оба типа батарей практически герметичны, не испаряют газов и в случае повреждения корпуса электролит у них не вытечет.
Устройство свинцово-кислотного аккумулятора
Конструкция батареи свинцово-кислотного типа кардинально отличается от других устройств, предназначенных для выработки пускового тока и питания электроприборов. Хотя в самой сути лежат химические процессы и электролиз. Диоксид свинца и чистый свинец вступают во взаимодействие с раствором серной кислоты.
Устройство АКБ такого типа можно описать химическими процессами: в ходе нагрузки происходит образование сульфата свинца. В это время этот металл окисляется на аноде, а на катоде восстанавливается его диоксид. В процессе заряда протекают противоположные реакции. На пластинах располагается сульфат свинца: он распадается, а на аноде снова восстанавливается чистый свинец. Благодаря этим несложным химическим процессам есть возможность многократно использовать батарею, то разряжая, то заряжая её повторно.
Но в составе каждого автомобильного аккумулятора присутствует такой рабочий элемент, как электролит — это жидкость, пропускающая электрический ток. Если зарядка длится слишком долго, то сульфата свинца становится всё меньше, и начинается процесс электролиза. Обилие пузырьков приводит к закипанию дистиллированной воды внутри батареи. Допускать такое явление не рекомендуется, потому что возрастает угроза взрыва.
Производители закладывают такую опцию, как постепенное снижение величины заряда на клеммах по мере возрастания напряжения. Также существует угроза потери дистиллята, но её восполняют периодической доливкой. Одним из самых важных критериев аккумуляторных батарей выступает их ёмкость. Аккумулятор устроен таким образом, чтобы отдавать электрическую энергию, и в этом его самое главное предназначение. Чем больше ёмкость, тем большим количеством энергии он делится с потребителями тока.
Измеряется ёмкость в ампер-часах и зависит от активной площади электродов каждой батареи. Чтобы добиться увеличения этого критерия, можно использовать несколько соединённых между собой пластин, выполняющих роль электродов. Их могут изготавливать из пористых материалов, что тоже приносит положительный эффект. Проводить ток в этом случае может не только поверхность, но и внутренняя структура. Ёмкость не является постоянным фактором, она зависит от других обстоятельств: силы разрядного тока, состояния, в котором находятся пластины, температуры рабочей жидкости. Если температура понижается, ёмкость автоматически тоже уменьшится, поскольку вязкость электролита будет снижена, и электрохимические реакции протекают в таких условиях труднее.
Устройство свинцово-кислотного аккумулятора
Конструкция батареи свинцово-кислотного типа кардинально отличается от других устройств, предназначенных для выработки пускового тока и питания электроприборов. Хотя в самой сути лежат химические процессы и электролиз. Диоксид свинца и чистый свинец вступают во взаимодействие с раствором серной кислоты.
Устройство АКБ такого типа можно описать химическими процессами: в ходе нагрузки происходит образование сульфата свинца. В это время этот металл окисляется на аноде, а на катоде восстанавливается его диоксид. В процессе заряда протекают противоположные реакции. На пластинах располагается сульфат свинца: он распадается, а на аноде снова восстанавливается чистый свинец. Благодаря этим несложным химическим процессам есть возможность многократно использовать батарею, то разряжая, то заряжая её повторно.
Но в составе каждого автомобильного аккумулятора присутствует такой рабочий элемент, как электролит — это жидкость, пропускающая электрический ток. Если зарядка длится слишком долго, то сульфата свинца становится всё меньше, и начинается процесс электролиза. Обилие пузырьков приводит к закипанию дистиллированной воды внутри батареи. Допускать такое явление не рекомендуется, потому что возрастает угроза взрыва.
Производители закладывают такую опцию, как постепенное снижение величины заряда на клеммах по мере возрастания напряжения. Также существует угроза потери дистиллята, но её восполняют периодической доливкой. Одним из самых важных критериев аккумуляторных батарей выступает их ёмкость. Аккумулятор устроен таким образом, чтобы отдавать электрическую энергию, и в этом его самое главное предназначение. Чем больше ёмкость, тем большим количеством энергии он делится с потребителями тока.
Измеряется ёмкость в ампер-часах и зависит от активной площади электродов каждой батареи. Чтобы добиться увеличения этого критерия, можно использовать несколько соединённых между собой пластин, выполняющих роль электродов. Их могут изготавливать из пористых материалов, что тоже приносит положительный эффект. Проводить ток в этом случае может не только поверхность, но и внутренняя структура. Ёмкость не является постоянным фактором, она зависит от других обстоятельств: силы разрядного тока, состояния, в котором находятся пластины, температуры рабочей жидкости. Если температура понижается, ёмкость автоматически тоже уменьшится, поскольку вязкость электролита будет снижена, и электрохимические реакции протекают в таких условиях труднее.
Обязательно ли снимать АКБ с машины, прежде чем подключить к устройству?
Многие автомобилисты стараются не снимать аккумулятор с машины для зарядки, мотивируя это тем, что после полной зарядки и установки АКБ на прежнее место возникают проблемы с электроникой. Такие опасения имеют под собой почву, поэтому если вы все же решили заряжать аккумулятор на машине, то постарайтесь придерживаться следующих правил:
- верхнюю поверхность следует хорошо очистить и включить выводы, предварительно сняв защитную крышку и выкрутив металлические болты;
- уровень электролита должен быть достаточным, при нехватке долейте дистиллированную воду, иначе вы не получите 100%-го заряда АКБ;
- подключать устройство в сеть следует только после того, как будет соблюдена полярность.
ЗУ из блока питания АТХ (для подготовленных)
Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.
Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500
Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК
Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.
Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.
Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».
Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.
Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.
В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.
Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.
Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.
Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.
Затем следует проверить правильность соединения всех выводов и работоспособность прибора.
Финальной работой перед завершением сборки является калибровка устройства.
Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.
Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.
По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.
Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.
Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.
Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.
Типы кислотных аккумуляторов
Аккумуляторы которые необходимо заполнить электролитом
В классических батареях каждая ячейка имеет пробку. До сих пор производятся аккумуляторы, которые необходимо заполнить электролитом перед первым использованием (с плотностью 1,28 г / см3), а затем дистиллированной водой, когда уровень электролита упадет ниже отмеченного минимума. На фото показаны батареи с заглушками, позволяющими доливать воду.
В старых батареях контроль плотности электролита с помощью ареометра позволял определять степень заряда (при полном заряде 1,26 … 1,28 г / см3, в разряженном около 1 г / см3), а добавление воды было обычной и необходимой практикой. Для подзарядки таких старых батарей использовались примитивные выпрямители, содержащие только трансформатор и диодный мост.
Простые зарядные устройства для кислотных аккумуляторов
Батарея заряжалась пульсирующим током с большой переменной составляющей. Для регулирования тока использовались либо отводы трансформатора, либо проволочные резисторы на вторичной стороне, либо лампочка, включенная последовательно с первичной обмоткой.
Технический прогресс, в том числе использование кальция вместо сурьмы в качестве добавок, позволил создать АКБ, которые при надлежащих условиях эксплуатации имеют очень небольшую потерю воды. Разработаны так называемые необслуживаемые аккумуляторные батареи. Термин «не требующий обслуживания» означает лишь то, что потеря воды мала, и производитель не предусматривает необходимости её добавления.
Необслуживаемый автомобильный аккумулятор с индикатором глазком
Но во многие «необслуживаемые» АКБ можно добавлять воду. Существуют также полностью необслуживаемые версии, которые не имеют заглушек для заливки воды, но имеют максимум клапанов давления или один общий клапан для удаления лишних газов в случае перезарядки.
Эти клапаны защищают от взрыва и предотвращают утечку электролита в случае опрокидывания аккумулятора. Но в любой сильно перезаряженной свинцово-кислотной батарее конечно будет интенсивное выделение газов и потеря воды, которую в полностью необслуживаемой батарее невозможно пополнить из-за отсутствия заглушек.
Современные автомобильные аккумуляторы часто имеют встроенные индикаторы под стеклом, цвет которых примерно определяет состояние аккумулятора (зеленый — ОК, черный — нужно зарядить, белый — повреждение и дефицит электролита). Это не электронная схема, а простой измеритель плотности и уровня электролита с зеленым шариком.
Устройство тяговых АКБ
По устройству тяговые источники питания в чем-то схожи со стартерными АКБ. В них также присутствуют положительные и отрицательные пластины, они, как и стартерные, работают по принципу преобразования химической энергии в электрическую. Но на этом схожесть заканчивается.
Устройство тяговой батареи на примере батареи производителя Sunlight
Главное отличие заключается в массе пластин, которая естественным образом трансформируется в массу и объем всей батареи. Тяговая аккумуляторная батарея 24V емкостью 75 Ач может превышать по размерам стартерную 12В АКБ в 40–50 раз. Объясняется это просто – пластины большего размера и массы позволяют значительно продлить срок эффективной эксплуатации АКБ с большим количеством циклов зарядки.
По типу электролита различают свинцово-кислотные и щелочные аккумуляторы. Щелочные АКБ, которые были очень распространены раньше, сейчас мало используются из-за их высокого ценового диапазона, а вот кислотные батареи в результате развития технологий находят все большее применение в электроприводной технике.
Различают три основных разновидности кислотных АКБ.
Аккумуляторы WET
Устройства традиционного типа с электролитом, представляющим собой растворенную дистиллированной водой серную кислоту в жидком – свободном виде. В зависимости от технологического способа производства электродов подразделяются на три основных класса:
- Аккумуляторы с обычным техобслуживанием. Пластины таких аккумуляторов изготавливаются из сплава свинцово-сурьмянистого состава, им требуется периодическая проверка уровня электролита и пополнение его дистиллированной водой.
- АКБ с ограниченным техническим обслуживанием. Изготавливаются по гибридной технологии: плюсовые пластины имеют свинцово-сурьмянистый состав с пониженным содержанием сурьмы, а отрицательные изготавливаются из сплава свинца и кальция. Процесс зарядки тяговых аккумуляторных батарей такого типа сопровождается меньшим испарением воды из электролита, поэтому восстановление уровня требуется только при эксплуатации в тяжелых условиях повышенных температур и нагрузок.
- В аккумуляторах SM (маркируемых еще как MF), не требующих обслуживания, электроды изготавливаются из свинцовых сплавов, которые не содержат сурьму. Положительные пластины могут иметь свинцово-кальциево-оловянный либо свинцово-кальциево-оловянно-серебряный состав, отрицательные производятся из свинцово-кальциевого сплава.
Источники WET типа применяются по большей части в качестве аккумуляторных батарей для электропогрузчиков. Заряжать тяговые аккумуляторы допускается исключительно под вытяжкой.
Аккумуляторы VRLA
Новое поколение тяговых аккумуляторов, классифицируемых в международной терминологии как VRLA, позволяет в значительной степени сократить не только занимаемое источником питания пространство. Свинцово-кислотные батареи, созданные на основе технологии VRLA, сохраняют все характеристики, присущие тяговой разновидности аккумуляторов, имея при этом массу и габариты, сопоставимые с аналогичными параметрами стартерных источников.
Аккумулятор Delta VRLA для мототехники
Тяговые аккумуляторные батареи для погрузчиков нетребовательны к габаритам и массе, скорее даже наоборот. А вот батареи для питания лодочных моторов, гибридных авто должны иметь большой запас емкости при минимальной массе и геометрических размерах. Так свинцово-кислотная тяговая батарея 65 Ач имеет геометрические размеры всего 278х175х190 мм.
По клапанно-регулируемой технологии выпускаются два типа источников питания:
- С использованием технологии AGM. Плюсовые пластины таких устройств изготавливаются из сплава свинца с кальцием и оловом, отрицательные – из свинцово-кальциевого. Изолирующим материалом, одновременно удерживающим в своем объеме кислый электролит, выступает поглощающее стекловолокно.
- С использованием гелевой технологии – типа GEL. Отличие с аккумуляторами AGM заключается в агрегатном состоянии электролита. Как следует из названия, кислая электролитная среда таких батарей переведена с применением гелеобразователей в состояние геля.
Принцип функционирования аккумуляторов VRLA имеет в своей основе метод кислородно-водородной рекомбинации. Незначительное избыточное давление, создающееся в корпусе устройства, нивелируется работой клапана.
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).