Типы стабилизаторов напряжения

Определение стабильности цифровой петли обратной связи с помощью билинейного преобразования

Если для формирования компенсации в петле обратной связи используется цифровой сигнальный процессор DSP (англ. DSP — Digital Signal Processor), стабильность такого цифрового контура может быть достигнута с помощью преобразования Лапласа для систем с дискретными сигналами.

В такой цифровой системе в качестве входного сигнала предусмотрен уже не непрерывный во времени сигнал, а дискретный в виде выборок с определенной частотой, называемой частотой дискретизации. Таким образом, значения переменных в s-плоскости должны быть преобразованы в дискретные значения Z-плоскости с выборкой по времени с помощью билинейного преобразования, известного как преобразование Тастина.

Результатом данного отображения является то, что устойчивая область в Z-плоскости превращается в окружность с радиусом, равным 1, в так называемую единичную окружность (рис. 17).

Рис. 17. Единичная окружность Z-плоскости

Удаленный правый край окружности (w = 0) представляет собой постоянный ток. Удаленный левый край окружности представляет собой частоту наложения спектров. Любые полюса, которые лежат вне этого круга, будут неустойчивыми. Полюса петли обратной связи теперь могут быть нанесены в Z-плоскости. Положения полюсов представляют нормированные отклики на частоту дискретизации, в отличие от сигналов непрерывных по времени, как это представлялось в S-плоскости.

Цифровая компенсация, во-первых, использует частоту дискретизации цифрового сигнального процессора, которая намного выше, чем системная частота перехода, так что любые расчеты являются точными. Для того чтобы найти значения параметров компенсации, здесь возможны два общих подхода. Первый — переработка в цифровую форму параметров компенсации на основе первичной разработки аналоговой системы управления, а второй — прямая разработка уже непосредственно цифрового управления. При переносе аналогового управления в цифровой вариант первоначально устанавливается линейная модель импульсного преобразователя. Причем компенсация петли обратной связи моделируется обычно в S-плоскости. А потом, для того чтобы завершить проектирование уже цифровой компенсации, результаты полученной аналоговой компенсации отображаются в z-плоскость. При непосредственном подходе к проектированию цифрового управления дискретная модель импульсного преобразователя является полностью моделируемой с использованием цифрового управления, а решение в части компенсации рассчитывается непосредственно в Z-плоскости. Это требует применения точных моделей всех аналоговых элементов, а моделирование осуществляется с помощью таких программ, как Spice или Matlab.

Результат обоих методов один и тот же — рассчитанная матрица значений сохраняется как таблица преобразования. DSP или микроконтроллер будут получать оцифрованный входной сигнал, вводить его для вычисления в матрицу, а на выходе иметь полученное значение либо как аналоговый сигнал управления, либо, что используется чаще всего, как скорректированный выходной сигнал управления непосредственно самого ШИМ-драйвера. В последнем случае схемы компаратора и цепи формирования ШИМ также будут синтезированы в цифровом виде. Это исключает ошибки контура аналогового управления, связанные с компенсацией наклона, и нестабильность RHP. Если требуется обрабатывать иной режим работы компенсации обратной связи на отклик, то цифровой контроллер может плавно переключаться между таблицами преобразования без сброса выхода преобразователя. Это уникальная способность, не свойственная аналоговым контроллерам. Таким образом, количество компромиссов, которым нужно следовать при выборе необходимой характеристики компенсации, значительно снижается.

Именно это отсутствие компромиссов и способность буквально мгновенно переключаться между быстрой переходной характеристикой или стабильным выходом и делает цифровой контур обратной связи таким привлекательным. Поскольку стоимость микроконтроллеров продолжает снижаться, то все больше и больше DC/DC-преобразователей будут мигрировать в сторону контроллеров с полностью цифровыми или гибридными петлями обратной связи.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля

Как вы можете узнать из статьи о светодиоде, для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор

Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в статье о этом приборе) . Тепловыделение растёт, КПД падает.

PMBus

Шина управления питанием (Power Management Bus – PMBus) – это существующий протокол, принятый и поддержанный несколькими производителями источников питания. Протокол принадлежит Форуму интерфейса управления системой (System Management Interface Forum – SMIF).

Членство в SMIF открыто для всех заинтересованных сторон, а спецификация PMBus общедоступна и распространяется бесплатно.

PMBus является общим, универсальным и гибким интерфейсом, который может использоваться с широким спектром устройств и хорошо работает со всеми видами источников питания.

PMBus предоставляет хосту доступ к описанной выше коммуникационной архитектуре управляемых устройств, но не предусматривает возможности прямого обмена между устройствами. PMBus обеспечивает надежный, широко используемый и понятный интерфейс цифрового регулирования и управления питанием, не ограничивая внедрение других инновационных методов.

В своей исходной форме PMBus – это двухпроводная последовательная шина, основанная на шине SMBus (System Management Bus), которая, в свою очередь, является производной от популярной шины Inter-IC (I2C), но усовершенствованной для большей функциональности в приложениях управления питанием.

Физическая реализация стандартом PMBus не определяется. Поэтому производители блоков питания и промышленные организации, такие как Distributed-power Open Standard Alliance (DOSA) и Point of Load Alliance (POLA), сотрудничают друг с другом, чтобы договориться о стандартных конфигурациях конструктивных параметров, внешних контактов и механических интерфейсов для межсоединений устройств и их программирования.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична

Импульсный трансформатор

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

Схема простого БП

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Печатная плата простого БП

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения

Двухполярный ИП на транзисторах

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Схема импульсного блока питания

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится

Функциональные возможности

Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.

В каждом таком изделии присутствует незаменимый элемент — трансформатор, который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.

Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.

Примеры схем включения стабилизатора LM317

Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.

Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.

Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.

Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.

Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.

Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.

Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.

Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.

Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Что такое диодный мост, принцип его работы и схема подключения

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Что такое операционный усилитель?

Бюджетные модели

5. Element 1502 DD

Бюджетное китайское устройство, которое применяется не только в лабораториях, но и для домашнего применения — тестирования приборов с нестандартным напряжением. Element 1502 DD считается полноценным одноканальным источником питания, погрешность преобразования потоков может достигать 1/100 доли. Станет отличным вариантом при необходимости качественного оборудования и небольшом бюджете.

Средняя стоимость устройства составляет около 1500 рублей.

Element 1502 DD

Плюсы

  • простота эксплуатации;
  • небольшая стоимость;
  • высокое качество деталей и сборки;
  • отличный вариант для ремонта простой электроники.

Минусы

не особо подходит для работы со сложными приборами.

Лабораторный блок питания Element 1502 DD

4. Korad KA 3005 D (30 В, 5 А)

Главным преимуществом данного устройства является наличие цифрового интерфейса, который способен запомнить ряд важных настроек. Индикаторы позволяют установить параметры с наибольшей точностью. Данный блок питания является популярным среди профессионалов и любителей радиоэлектроники. Его приобретение не составит особого труда, так как купить данный аппарат можно как самостоятельно в России, так и заказав из Китая.

Стоимость при покупке составит около 5000-6000 рублей.

Korad KA 3005 D (30 В, 5 А)

Плюсы

  • повышенная мощность;
  • цифровой интерфейс;
  • точность настроек;
  • надежность;
  • удобство эксплуатации;
  • расширенный функционал.

Минусы

значимые минусы отсутствуют.

Лабораторный блок питания Korad KA 3005 D (30 В, 5 А)

3. PS – 1501 A

Устройство китайского производства, отличающееся наличием индикаторов в виде стрелок, один из которых отвечает за измерение вольтажа (0-15), а другой — ампер (1-3). Работа устройства происходит за счет единственного резистора, который расположен на передней панели устройства. Отсутствие цифрового интерфейса не смущает даже профессионалов, а предельная пульсация достигает 3 мВ. Прибор является одноканальным, обладает повышенной точностью, но имеет достаточно значимую погрешность. Наиболее часто применяется в домашних условиях и у частных мастеров.

Стоимость устройства составляет около 1150 рублей.

PS – 1501 A

Плюсы

  • небольшая стоимость;
  • простота управления;
  • надежность конструкции;
  • точность устройства;
  • большой эксплуатационный срок.

Минусы

достаточно значимая погрешность, из-за которой измерения весьма приблизительны.

Лабораторный блок питания PS – 1501 A

2. LW – K – 3010 D

Мощное лабораторное устройство импульсного типа с увеличенным показателем в 32 В. Характеристики тока соответствуют международному стандарту. Также стоит отметить наличие аналоговой настройки выходов. Устройство, благодаря наличию многооборотного переменника, может быть установлено с точностью до 0,1 В. Установка выходного стабилизационного тока возможна в грубой форме.

Средняя стоимость устройства на рынке товаров составляет около 2800-3000 рублей.

LW – K – 3010 D

Плюсы

  • высокий уровень мощности отдачи;
  • конструкция вертикального типа;
  • компактный формат;
  • приятное сочетание цены и качества;
  • надежность конструкции;
  • продолжительный эксплуатационный срок.

Минусы

значимые недостатки отсутствуют.

Лабораторный блок питания LW – K – 3010 D

1. YA XUN PS – 1502 DD

Устройство высокого качества, несмотря на китайское происхождение. Данный аппарат особо часто применяется в сервисах по ремонту смартфонов, планшетов и других гаджетов. YA XUN PS – 1502 DD является достаточно простым одноканальным инструментом с максимальным диапазоном вольтажа 15 ватт и 1-3 ампера. Пульсационный показатель равен 3 единицам, а за настройку параметров отвечают 4 резистора. Наличие возможности тонкой настройки позволяет особо точно установить даже четырехзначные параметры. Однако, несмотря на название, устройство подходит только для простых и особо распространенных задач.

Приобрести данное устройство можно всего за 1300 рублей.

YA XUN PS – 1502 DD

Плюсы

  • упрощенная рабочая схема;
  • простота управления;
  • низкая стоимость;
  • качество сборки;
  • надежность конструкции;
  • длительный эксплуатационный срок.

Минусы

  • малоизвестный бренд;
  • слабо справляется со сложными задачами.

Лабораторный блок питания YA XUN PS – 1502 DD

LM317

Применение LM317 (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток.  Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Схема стабилизации до 10 ампер

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Устройство импульсных источников питания

Входное напряжение выпрямляется. Процесс осуществляет диодный мост, реже одиночный диод. Затем напряжение нарезается импульсами, здесь литература бодро переходят к описанию трансформатора. Читателей наверняка мучает вопрос – как работает чоппер (устройство, формирующее импульсы). На основе микросхемы, питающейся непосредственно сетевым напряжением 230 вольт. Реже специально ставится стабилитрон (стабилизатор параллельного типа).

Микросхема формирует импульсы (20 – 200 кГц), сравнительно малой амплитуды, управляющие тиристором или иным полупроводниковым силовым ключом. Тиристор нарезает высокое напряжение импульсами, по гибкой программе, формируемой микросхемой генератора. Поскольку на входе действует высокое напряжения, нужна защита. Генератор охраняется варистором, сопротивление которого резко падает при превышении порога, замыкая вредный скачок на землю. С силового ключа пачки импульсов поступают на малогабаритный высокочастотный трансформатор. Линейные размеры сравнительно невысоки. Для компьютерного блока питания мощностью 500 Вт умещается детской ладонью.

Полученное напряжения вновь выпрямляется. Используются диоды Шоттки, спасибо низкому падению напряжения перехода металл-полупроводник. Спрямленное напряжение фильтруется, подается потребителям. Благодаря наличию множества вторичных обмоток достаточно просто получаются номиналы различной полярности и амплитуды. Рассказ неполон без упоминания цепи обратной связи

Выходные напряжения сравниваются с эталоном (например, стабилитрон), происходит подстройка режима генератора импульсов: от частоты, скважности зависит передаваемая мощность (амплитуда). Изделия считаются сравнительно неприхотливыми, могут функционировать в широком диапазоне питающих напряжений

Корпусной блок питания

Технология носит название инверторной, используется сварщиками, микроволновыми печами, индукционными варочными панелями, адаптерами сотовых телефонов, iPad. Компьютерный блок питания работает подобным образом.

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Чем импульсные стабилизаторы лучше линейных? Ответ Компании Rohm

Приведен обзор модульных импульсных стабилизаторов компании Rohm, которые обладают высоким КПД и просты в применении. Кроме того, подробно рассматриваются и сравниваются основные характеристики импульсных и линейных стабилизаторов.

Современная аппаратура становится все легче и компактнее благодаря применению интегральных схем высокой степени интеграции, передовых схемотехнических решений, использованию более емких и легких аккумуляторных батарей

В портативном приборе важно правильно организовать питание и достичь не только высокого КПД, но и обеспечить требуемое время жизни батареи. Для продления срока ее службы нужно организовать низкое собственное энергопотребление прибора, а значит, используемых компонентов

Кроме того, желательно применять переход в ждущий режим

тех цепей, которые не используются в данный момент. Всем этим требованиям отвечают модульные импульсные стабилизаторы компании Rohm. Рассмотрим их параметры в сравнении с параметрами линейных аналоговых стабилизаторов.

Сравнение импульсных

и линейных стабилизаторов

Преимущества линейных стабилизаторов известны: это простота, низкий уровень шума на выходе и низкая цена. Недостатком их является низкий коэффициент полезного действия (КПД). Линейные стабилизаторы — только понижающие. Когда нужно высокое напряжение для питания дисплея или отрицательное напряжение для аналоговых цепей — без импульсных стабилизаторов не обойтись. Преимуществом импульсных стабилизаторов является высокий КПД, но в то же время импульсный характер работы является причиной генерации импульсных шумов, наличие которых не позволяет использовать импульсные стабилизаторы повсеместно.

В таблице 1 приведено сравнение основных параметров стабилизаторов с точки зрения их применения в портативной аппаратуре.

Как видно из таблицы, и линейные, и импульсные стабилизаторы имеют свои достоинства и недостатки. Обычно в одном устройстве применяются и линейные аналоговые, и импульсные стабилизаторы. Линейный стабилизатор преобразует напряжение батареи в напряжение для питания логических цепей, а один или несколько

импульсных стабилизаторов обеспечивают другие номиналы напряжений для питания аналоговых цепей или ЖК-дисплеев.

Для того чтобы уменьшить токи утечки батареи, в портативных приборах принято отключать неиспользуемые в настоящий момент цепи. В импульсных стаби-

RPM7136 — ИК-фотоприемник от ROHM

Инфракрасный фотоприемник для ПДУ японской фирмы ROHM RPM7136 нельзя отнести к новинке, скорее это «рабочая лошадка», продукт, проверенный временем. Основные достоинства продукции ROHM — это надежность японского производителя, оцененная многими производителями РЭА и очень привлекательная цена. Применение фотоприемника:

• Телевизоры

• Музыкальные центры

• Кондиционеры

• Бытовая электрорадиоаппаратура

Особенности RPM7136:

• Малый ток потребления (0,85 мА)

• Наличие внутреннего фильтра

• Высокое подавление пульсаций

• Высокая помехоустойчивость к солнечному свету Фотоприемник применяется в системах дистанционного управления бытового назначения. RPM7136 — это модуль, в функции которого входит прием и обработка ИК оптического сигнала, он обеспечивает прием, усиление, фильтрацию и демодуляцию. Несущая частота, с которой работает данный модуль, составляет 36,0 кГц. Модульный фотоприемник допускает непосредственное подключение к микроконтроллеру. Напряжение низкого логического уровня составляет ,5 В, а высокого — 4,5 В. Модуль может поставляться с пятью типами держателей.

Предыдущая статья «Микроконтроллеры MCF5223X для сетевых приложений»

Следующая статья >> «Чем импульсные стабилизаторы лучше линейных? Ответ Компании Rohm.Продолжение»

Регулировка инерционного стабилизатора изображения для фотокамеры

Если вы используете грузики, положение центра тяжести которых нельзя изменить (как на фото), то отрегулировать горизонт можно путём поворота вертикальной планки на небольшой угол в узле её крепления. Перед регулировкой, один из винтов отпускается, а второй затягивается не до конца. После чего, планка устанавливается в нужно положение, и оба винта затягиваются.

Если в камере нет электронного индикатора уровня, то для юстировки горизонтального положения камеры можно использовать внешний пузырьковый уровень.

Если отказаться от установки быстросъёмной площадки, и использовать стандартный фото винт, то такой стабилизатор можно изготовить за пару часов.

А вот идея, как можно приподнять фото винт от фотовспышки над горизонтальной планкой. Давным-давно использовал это решение здесь>>>

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector