Простая, рабочая схема светодиодного индикатора разряда литиевого аккумулятора li-ion на управляемом стабилитроне tl431 своими руками

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

R1= 3,8к

R2=1к

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Аккумулятор заряжен, а в глазке не видно зеленого цвета

Аккумуляторы, оборудАккумуляторы, оборудованные глазком, позволяют быстро оценить состояние зарядаованные глазком, позволяют быстро оценить состояние заряда

Такая ситуация случается. АКБ долго стоит на зарядке, но в глазке не видно зеленого поплавка. В чем причина:

  • зеленый шарик попросту застрял в патрубке и не может подняться. Решается легкой тряской батареи;
  • в конструкции аккумулятора есть пластины, и они имеют свойство портиться. Мусор от них и мешает устройству отображать точные данные;
  • АКБ испорчен.

Аккумуляторы, оборудованные глазком, позволяют быстро оценить состояние заряда. Но, по мнению многих автолюбителей, это ненадежный метод, поэтому выбирают привычный способ проверить напряжение – нагрузочной вилкой.

Разрядившаяся в самый неподходящий момент аккумуляторная батарея автомобиля мало кого способна обрадовать, разве что тех, кто хотел остаться дома.

Чтобы в будущем не быть свидетелем таких «сюрпризов», многие автовладельцы устанавливают индикаторы, которые бывают нескольких видов. Но не стоит забывать и про привычный способ проверки степени заряда – вольтметром.

Виды индикаторов заряда автомобильного аккумулятора

Не многие автолюбители знают цифровые значения напряжения аккумуляторной батареи, достаточные для уверенного запуска двигателя автомобиля. Особенно эта проблема актуальна для новичков. Бортовые компьютеры современных автомобилей выдают потребителю большой объем необходимой информации, среди которой присутствует и напряжение холостого хода АКБ. Аналоговые вольтметры старых автомобилей имеют шкалу, дающую информацию о напряжении аккумулятора.

Поэтому возникает необходимость в наличии индикаторов, способных оценить готовность аккумуляторной батареи к запуску двигателя и сообщить о результатах водителю в виде визуального сообщения. Можно выделить следующие разновидности таких индикаторов:

  • встроенный, показывающий состояние аккумуляторной батареи, расположенный непосредственно на корпусе АКБ;
  • индикаторы зарядки аккумулятора, выпускаемые сторонними производителями, имеющие шкалу допустимых и запрещенных для начала запуска значений напряжения АКБ, уровень заряда, выраженный в процентах от полного его значения.

Встроенные имеют аккумуляторы средней и высокой ценовой шкалы преимущественно необслуживаемого типа. Для использования индикаторов сторонних производителей необходимо провести дополнительные работы по их установке в салоне автомобиля (на видном месте) и подключению к аккумуляторной шине автомобильной электрической проводки.

Где находится и как работает глазок аккумулятора?

Глазок индикатора АКБ снаружи выглядит как прозрачное круглое окошко, которое находится на верхней крышке батареи, чаще всего возле центральных банок. Сам индикатор аккумулятора представляет собой жидкостный ареометр поплавкового типа. О работе и использовании этого прибора подробно написано здесь.

Зачем нужен глазок в аккумуляторе и как он работает: видео

Принцип действия индикатора заряда аккумулятора основан на измерении плотности электролита. Под глазком на крышке находится световодная трубка, наконечник которой погружен в кислоту. В наконечник помещены разноцветные шарики из разных материалов, всплывающие при определенном значении плотности заполняющей батарею кислоты. Благодаря световоду цвет шарика отчётливо виден через окошко. Если глазок остаётся черным или белым, это указывает на недостаток электролита и необходимость доливки дистиллированной воды либо на неисправность батареи или индикатора.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Индикатор заряда автомобильного аккумулятора, инструкция по изготовлению своими руками — Автомастер

20.03.2019

Аккумулятор играет ключевую роль при запуске двигателя автомобиля. И насколько успешным будет этот запуск, во многом зависит от степени заряженности аккумуляторной батареи. А многие из нас контролируют уровень заряда АКБ? Называется, ответьте себе сами на этот вопрос.

Поэтому высока вероятность того, что вы в один прекрасный день не заведёте автомобиль из-за дохлого аккумулятора. Собственно, сама проверка степени зарядки несложная. Нужно просто периодически измерять напряжение аккумулятора автомобиля мультиметром или вольтметром.

Но было бы гораздо удобнее иметь простой индикатор, показывающий состояние заряда аккумулятора. О таких индикаторах пойдёт речь в этом материале.

Фабричные индикаторы заряда АКБ

Сегодня в продаже можно найти достаточно интересные устройства для контроля уровня зарядки аккумулятора по его напряжению. Давайте рассмотрим некоторые из них.

Индикатор уровня заряда аккумуляторной батареи DC-12 В

Это устройство продаётся в виде конструктора. Оно подойдёт для тех, кто дружит с электротехникой и паяльником.

Схема индикатора зарядки

Индикатор DC-12 В позволяет проверять заряд автомобильного аккумулятора и функционирование реле-регулятора. Индикатор продаётся в виде комплекта запчастей и собирается самостоятельно. Стоимость устройства DC-12 В составляет 300─400 рублей.

Основные характеристики индикатора DC-12 В:

  • Диапазон напряжений: 2,5─18 вольт;
  • Максимальный потребляемый ток: до 20 мА;
  • Габариты печатной платы: 43 на 20 миллиметров.

Вернуться

Панель с индикатором от TMC

Этот индикатор может заинтересовать тех, кто установил себе второй аккумулятор в машину.

Индикатор от TMC

Устройство представляет собой алюминиевую панель с вольтметром и тумблером для переключения между АКБ. Произведено в Китае и стоит около 1500 рублей.

Вернуться

Индикаторы Faria Euro Black Style и Signature Gold Style

В магазинах можно найти индикаторы уровня заряда аккумулятора 12В от фирмы Faria (США).

Euro Black Style

Signature Gold Style

Правда, цена на эти устройства совершенно неадекватная 4─5 тысяч рублей. За эти деньги проще купить новый аккумулятор. При желании можно найти большое количество всевозможных индикаторов заряда под свои нужды на сайте «АлиЭкспресс». Цена там вполне нормальные.

Вернуться

Индикатор заряда аккумуляторной батареи своими руками

В завершение рассмотрим, как сделать индикатор заряда аккумулятора своими руками. В сети есть огромное количество всевозможных схем для создания подобных индикаторов. Была выбрана одна, наиболее распространённая схема, по сборке которой было достаточно много положительных отзывов.

Для сборки индикатора потребуются:

  • Транзисторы: по одному ВС547 и ВС557;
  • Резисторы: два 1 кОм, три 220 Ом и один 2,2 кОм;
  • Стабилитроны: по одному 9,1 и 10 вольт;
  • Печатная плата;
  • Набор светодиодов (красный, синий, зелёный).

Комплектующие собираются по следующей схеме, представленной на изображении ниже.

Схема для сборки индикатора своими руками

Старайтесь скомпоновать комплектующие на печатной плате так, чтобы они занимали как можно меньше места. Перед пайкой светодиодов проверьте их тестером на соответствие цвета и контактов. Лучше паяйте светодиоды не напрямую к плате, а выносите их на проводах, чтобы потом было удобнее устанавливать индикатор на автомобильной панели приборов.

Этот самодельный индикатор демонстрирует определённый уровень зарядки АКБ, не выводя конкретного значения напряжения. Корректная работа:

  • Красный светодиод загорается при напряжении 6─11 вольт (это критический разряд);
  • Синий горит при 11─13 вольт (в штатном режиме работы);
  • Зелёный включается при напряжении больше 13 вольт (полностью заряженная АКБ).

Собранная плата устанавливается где-нибудь на обратной стороне приборной панели, подключается в бортовую сеть, а светодиоды на проводах выводятся на лицевую сторону. Если все сделать аккуратно, то внешний вид не пострадает и появится возможность контролировать заряд аккумулятора автомобиля. Советуем также прочитать о том, что такое ампер-час.

Вот такие есть варианты индикаторов для контроля заряда автомобильной аккумуляторной батареи. Теперь у вас не будет вопросов о том, как часто подзаряжать автомобильный аккумулятор. Вы будете точно знать о необходимости зарядки из показаний индикатора.

Вернуться

Технические характеристики TL431 и TL431A

У TL431A и TL431 такие параметры:

  • Мощность составляет 0.2 Вт.
  • Электрический ток на выходе достигает 100 мА.
  • Напряжение на выходе варьируется от 2,5 до 36 В.
  • Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
  • Рабочая температура TL431A варьируется от -40 до +85 градусов.

Также важны другие параметры.

Линейное регулирование или регулирование на входе

Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.

Изначальная точность регулятора напряжения (или точность напряжения)

Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.

Падение напряжения

Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.

Пусковой ток или импульсный входной ток

Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.

Ток покоя в цепи регулятора

Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.

Переходная реакция

Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.

Расчёт напряжения TL431 

Глазок индикатор заряда аккумулятора

Практически каждому владельцу автомобиля знакома ситуация, когда ни с того ни с сего машина не заводится, а в последствии выясняется, что причина в разряженном аккумуляторе. Чтобы избежать такого, нужно следить за уровнем заряда, а для проверки достаточно только заглянуть под капот.

Для чего нужен глазок у автомобильного аккумулятора

Многие автомобильные аккумуляторы оснащены специальным прибором, который измеряет и показывает степень заряженности батареи. Встроенный индикатор заряда находится на лицевой (верхней) стороне устройства и похож на глазок – посмотрев на него, автовладелец быстро понимает, что всё в порядке либо необходима подзарядка.

Интересно! Многие думают, что это лампочка, которая загорается разными цветами. Однако никакой лампочкой устройство не оснащено. Всё, что видит человек, заглядывая в глазок – это цветной шарик или пустота.

Как работает индикатор и насколько он точен

Под маленьким глазком скрывается встроенный аэрометр (прибор, измеряющий плотность жидкости). Внутри аккумулятора электролит и, измеряя его плотность, прибор сообщает, есть ли необходимость в зарядке.

Устройство прибора

Аэрометр представляет собой небольшую трубку, в конце которой находится поплавок в виде цветного шарика. Если аккумулятор заряжен хорошо, плотность электролита высокая, и шарик поднимается наверх. Именно его и видит автовладелец через лупу глазка.

При недостаточном заряде плотность электролита падает, и зеленый шарик тонет. Вместо него видна только трубка устройства черного цвета и глазок кажется черным. В некоторых аккумуляторах помимо зеленого есть еще и красный шарик. Именно он всплывает наверх при понижении плотности, сменяя зелёный.

Смазки для клемм аккумулятора

Помимо недостаточного заряда в аккумуляторе может быть недостаток электролита. В таком случае в глазке видна поверхность жидкости, и индикатор приобретает белый цвет.

Погрешности в работе индикатора

Не стоит безоговорочно верить показателю индикатора и полностью на него полагаться. Судя по многочисленным отзывам автолюбителей, в его работе есть погрешности, и он не всегда показывает реальное состояние аккумулятора. Причина может быть в следующем:

  • плотность электролита меняется в зависимости от температуры – холод повышает его плотность, и индикатор будет показывать норму при том, что аккумулятор на самом деле почти разряжен;
  • стеклянные и пластиковые части прибора могут повредиться из-за высокой температуры и повлиять на его точность;
  • аккумулятор состоит из 6 банок, а прибор установлен только в одной и отображает данные только по ней, ситуация же в остальных банках может существенно отличаться и влиять на общую работу всего АКБ.

Автолюбители отмечают еще один недостаток такого индикатора – чтобы проверить заряд нужно открыть капот и заглянуть под него. Конечно же, гораздо удобнее, когда данные отображаются прямо в салоне автомобиля.

Обозначения цветов

Глазок у аккумулятора предполагает три цвета – зелёный, белый и черный, в зависимости от заряда батареи и состояния электролита. В некоторых устройствах используется еще один цвет – красный. У каждого цвета есть своё значение, благодаря которому автолюбитель понимает, заряжен или разряжен аккумулятор.

  • Зеленый индикатор на аккумуляторе. Если глазок зелёный – можете быть спокойны. Это означает, что батарея заряжена, и подзарядка не требуется. Можно пользоваться автомобилем в обычном режиме.
  • Красный индикатор на аккумуляторе. Красный глазок — то тревожный сигнал, сообщающий автомобилисту, что АКБ разряжен и требует срочной подзарядки. В этом случае нужно незамедлительно достать его из авто и полностью зарядить.

Почему не горит зеленый индикатор на аккумуляторе

В замешательство обычно впадают после воспроизведения полного цикла зарядки или долива воды. В первую очередь стоит отметить, что вот прямо сразу индикатор не должен высвечиваться зеленым цветом — это ведь не лампочка.

Но чаще всего проблема не всплывания зеленого шарика простая:

  1. необходимо подождать — электролит не успел перемешаться — на это может потребоваться несколько суток, при этом сама батарея будет работать;
  2. шарик застрял — попробуйте немного встряхнуть аккумулятор;
  3. искажение цвета — со временем пластины батареи несколько осыпаются и делают электролит мутным;
  4. закончился ресурс аккумулятора и пора его заменить.

Индикаторы аккумулятора Зверь и Тюмень

Практически каждому владельцу автомобиля знакома ситуация, когда ни с того ни с сего машина не заводится, а в последствии выясняется, что причина в разряженном аккумуляторе. Чтобы избежать такого, нужно следить за уровнем заряда, а для проверки достаточно только заглянуть под капот.

Схема самодельного индикатора.

Итак к схеме (нарыл в интернете). Схема собрана, проверена, заработала сразу.

В схеме используется TL431.

Очень удобная штука, я вам скажу. Многие схемы с ней сильно упрощаются. Так что можете закупать их сразу пачку, как я.

На ее основе можно так же сделать и балансир для аккумулятора, но об этом в другой раз.

Брал TL431 у китайцев здесь. У них пачка стоит, как у нас одна штука.

Транзистор BC547 очень распространен, стоит копейки и есть в любом магазине радиокомпонентов. Можно , но он и так очень дешевый. Если только тоже пачку взять.

Резисторов я уже закупил в свое время разных номиналов. Вот очень дешевый набор резисторов, который еще долго будет вас радовать.

R1*(у меня)=4,6K; R2=1К; R3=11К(подобран под транзистор BC547); R4=1,5К(подбираем под светодиод в зависимости от напряжения питания схемы).

Светодиод берем любой маломощный трех миллиметровый, просто smd не удобно монтировать в корпус.

Расчет резистора R1 под необходимое напряжение срабатывания схемы осуществляется по формуле: R1=R2*(Vo/2,5В — 1).

Я рассчитывал чтобы индикатор загорался при 14В, то есть при 3,5В на банку (мой АКБ состоит из четырех АКБ номиналом 3.7В). В полностью заряженном состоянии 16.8В (по 4.2В на банку). Возьмем R2 равный 1К. (При настройке на низкие напряжения, например 3.6В, необходимо R2 брать 10К).

Итак рассчитываем на 14В. R2=1КОм=1000 Ом. R1=1000*(14В/2,5В-1)=1000*(5,6-1)=1000*4.6=4600 Ом = 4,6КОм (Для шуруповерта на 14.4В (4 банки по 3,7В), переделанного на литий).

Для 12В (3 банки по 3,7В) шуруповерта, переделанного на литий: срабатывание при 10,5В R2=1К R1=1000*(10,5/2,5-1)= 3,2КОм.

Для 18В (5 банок по 3,7В) шуруповерта, переделанного на литий: срабатывание при 17,5В R2=1К R1=1000*(17,5/2,5-1)= 6КОм.

Список значений R1 при R2=1КОм для тех кому лень считать:

  • 5В – 1К
  • 7,2В – 1,88К
  • 9В – 2,6К
  • 10,5В — 3,2К
  • 12В – 3,8К
  • 14В — 4,6К
  • 15В — 5К
  • 17,5В — 6К
  • 18В – 6,2К
  • 20В – 7к
  • 24В – 8,6к

Готовый индикатор разряда аккумулятора шуруповерта.

Работает четко, стабильно. В настройке не нуждается.

Набор резисторов из 30 номиналов по 10шт. Вего 300 шт.Пачка TL431 за копейки.Пачка BC547.

Обозначение символов на дисплее

  • V -измеренное напряжение на АБ
  • Vs(max) -напряжение до какого будет произведен заряд
  • Vmin(m) -минимальное напряжение на АБ при котором разряд будет отключен 
  • I -измеренный ток заряда
  • Is -установленный ток заряда
  • Id – измеренный ток разряда
  • Ii -установленный в меню ток разряда(стабилизация тока разряда)
  • Imin -минимальный ток при котором заряд будет окончен
  • H -время таймера. Для вех режимов.
  • Hi -оставшееся время до отключения по таймеру
  • P -емкость АБ-Аh
  • LED -подсветка

1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена

1.1.Напряжение до какого будет произведен заряд. По умолчанию  Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)

1.2.Установленный ток заряда. По умолчанию Is=0.5А.( диапазон выбора в меню 0.5 -10А.дискретность 0.5А.)

1.3.Реальное напряжение на АБ. Например-V=13.7

1.4.Режим по умолчанию – зарядка (режим можно изменить в меню. Названия режимов. заряд . разряд. ктц акб.)

РЕЖИМ 1.заряд

Если АБ не подключена-вместо напряжения на АБ вывести надпись – no bat.Все остальное как и при подключённой АБ.

Пример 1.0. батарея не подключена

Vs=14.2       Is=0.5A
? АКБ         Заряд

При нажатии кнопки start – запустить установленный режим. При повторном нажатии – остановить. при запущенном режиме – название выбранного режима мигает. при остановленном – горит постоянно.

Пример 1.1. батарея подключена.

Vs=14.2      Is=0.5A    
V=13.7       Заряд

При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A

Пример 1.2. идет заряд.

I=3.6A     Is=0.5A
V=13.7   заряд

После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.

Если ток заряда превышает установленный в меню. А также напряжение на АБ превысило установленное в меню-отключить заряд и вывести надпись – ERROR.

РЕЖИМ 2. разряд

2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.

Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.

Если режим запущен. АБ не заряжена. Идет автоматический   заряд, после  которого  начнется  разряд.

I=0.5A     заряд
P=0Ah  

2.1 Ток разряда по умолчанию Id = 0.5 A. Диапазон выбора в меню 0.5-10 А. дискретность 0.5 А.

2.2. Hi – Время оставшееся до конца разряда после истечения которого разряд будет отключен по умолчанию. 

2.3. Измеренная емкость батареи P=????Ah (пример Р = 45.4Ah).
 
Пример 2.1. окно в процессе разряда

Id=0.5A Hi=10
P=45.4Ah разряд

После окончания разряда подать сигнал с паузой 1 секунду. И так пока не будет включен другой режим. Сигнал подать на вывод 4 МК. Светодиод out. На дисплей вывести надпись верху – P=????Ah. Vm=11.0 внизу – разряд OFF.

Пример 2.2. разряд окончен

P=100.3Ah Vm=11.0
Разряд выкл

РЕЖИМ 3. Ктц акб. Десульфатация.

В основном окне режима, если режим запущен, название режима (КТЦ) мигает. Если не запущен – не мигает.

3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А

3.2. Ток разряда Id = 0.5А. Диапазон 0.5-10 А.

3.3. Напряжение на АБ. Частота 1 Гц.

Пример 3.0. идет десульфатация.

I=5.0A  Id=0,5A
V=14.2  КТЦ-АКБ

После окончания заряда(по таймеру или при достижении установленного напряжения, режим отключить) вывести надпись – КТЦ ВЫКЛ. И напряжение на АБ.

Пример 3.1.конец работы.

V=14.7
КТЦ ВЫКЛ

   Обсудить статью ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Вторая схема

Схема устройства, показанная на рис. 2, лишена такого недостатка . Это позволяет применять его практически в любой аппаратуре: как в различных цифровых, так и в звуковоспроизводящих и радиоприемных устройствах.

Стабилизатор содержит коммутирующий составной транзистор VT1, VT2, коммутирующий диод VD2 и дроссель L1. В узел управления входят опорный элемент на транзисторе ѴТЗ и компаратор DA1.

На выходе стабилизатора включен транзисторный фильтр ѴТ4, ѴТ5. Основа узла управления — компаратор DA1 на ОУ типа К140УД12. К его инвертирующему входу подключен микромощный опорный элемент, выполненный на обратносмещенном эмиттерном переходе транзистора ѴТЗ. Напряжение его стабилизации (лавинного пробоя) 7…7,5 В обеспечивается при токе 20…30 мкА.

Рис. 2. Схема экономичного импульсного стабилизатора напряжения.

На неинвертирующий вход ОУ подается сигнал с резистивного делителя R5 — R7. Выходное напряжение регулируется потенциометром R6.

Конденсатор C3 увеличивает фазовый сдвиг сигнала обратной связи, что необходимо для циклического характера работы устройства. Он же определяет рабочую частоту и в значительной мере влияет на величину пульсаций.

Выход компаратора подключен к базе составного транзистора (VT1, VT2) через резистор R3, задающий ток управления, и стабилитрон VD1, который обеспечивает отсечку управляющего тока и надежное закрывание коммутирующего транзистора во всем интервале входного напряжения. Конденсатор С2 подавляет высокочастотные помехи.

На выходе стабилизатора включен не традиционный LC-фильтр, а транзисторный, что позволяет улучшить динамические характеристики устройства и подавить пульсации не менее чем на 40 дБ.

У транзисторного фильтра есть еще одно преимущество — «мягкое» включение стабилизатора: его выходное напряжение плавно нарастает в течение 2…4 с. Негативным моментом использования транзисторного фильтра является снижение КПД стабилизатора на 6…8%.

Дроссель L1 содержит 28 витков провода ПЭВ-2 0,57, намотанного на броневом магнитопроводе Б14 из феррита 2000НМ. Немагнитный зазор 0,2 мм в магнитопроводе обеспечен прокладкой из бумаги.

Транзисторы устройства при номинальном токе не требуют теплоотвода. Если стабилизатор предполагают эксплуатировать при токе нагрузки более 50 мА, то транзистор ѴТ1 должен быть типа КТ81х и его следует установить на теплоотвод площадью 10… 15 смг. Допустимо использовать транзисторы КТ639, КТ644, тогда выходной ток стабилизатора можно увеличить до 0,5 А.

Как проверить мультиметром

TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.

Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.

TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.

Схемы включения TL431

Разберемся как работает TL431 на примере простейшей схемы стабилизации, состоящей из самого стабилитрона и одного резистора. К катоду подключается положительный, а к аноду отрицательный полюс питания. Для включения микросхемы, на её управляющий электрод подается опорное напряжение (Vref). 

Если его значение будет больше 2.5 В, то стабилитрон почти сразу откроется и начнет пропускать через себя ток (IKA), которым можно запитать соответствующую нагрузку. Его значение будет расти вместе с повышением уровня Vin . IKA можно определить по формуле IKA = (Vin— Vref)/R. При этом, выходное напряжение схемы будет стабилизировано на уровне опорного (VКА = Vref), не превышающего 2.5 В и независимо от подаваемого на входе Vin.

Расчет параметрической схемы стабилизации

Для получения на выходе микросхемы большего по величине напряжения (вплоть до 36 В), к её управляющему электроду дополнительно подсоединяют резистивный делитель. Он состоит из двух резисторов (R1 и R2) подключаемых между катодом и анодом. В этом случае внутреннее сопротивление стабилитрона возрастает на (1 + R1/R2) раз.

Для расчета схемы стабилизации на TL431 необходимы начальные данные о входном(VIN) и выходном (VКА) напряжениях, а также токах: стабилизации (IKA) и нагрузки (IL). Имея эти данные можно рассчитать значения других электронных компонентов, представленных на рисунке ниже.

Выходное напряжение и номиналы сопротивлений связаны между собой следующей формулой VКА= Vref *(1 + R1/R2)+ Iref *R1. Где Vref = 2495 мВ и Iref = 2 мкА -это типовые величины, они указаны в электрических параметрах из даташит на устройство.

Сопротивление R1 также можно взять из datasheet. Чаще всего берут с номиналами от 10 до 30 кОм. Значение R1 ограничено небольшим опорным током (Iref = 2 мкА), которым часто пренебрегают для расчетов схем стабилизации на TL431. Поэтому для вычисления значения R2, без учета Iref, можно использовать следующую формулу R2=R1/((VКА/Vref)-1).

Регулировка напряжения стабилизации

Для построения схем с возможностью ручной регулировки напряжения на выходе, вместо обычного R1 ставят потенциометр. Номинал ограничительного резистора R, оказывающего сопротивление току на входе (IIN), рассчитывают по формуле R=(VIN-VКА)/ IIN. Здесь IIN = IKA+ IL.

Несмотря на достоинства микросхемы TL431, есть у неё и весьма существенный недостаток– это маленький ток в нагрузке, который она способна выдержать. Для решения этой проблемы в схему включают мощные биполярные или полевые транзисторы.

Примеры различных схем на основе стабилитрона TL431 можно посмотреть в следующем видео.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector