Правила безопасного поведения с бытовыми электроприборами

Обзор моделей

Ниже будут рассмотрены различные модели современных симисторных регуляторов мощности, которые представлены на рынке:

Регулятор мощности РМ 2

Эту модель одинаково успешно можно использовать как в домашних условиях, так и на производстве. Основное предназначение заключается в изменении показателей мощности при функционировании отопительных приборов и источников освещения.

Отличительной чертой регулятора РМ 2 является низкий уровень зависимости от сетевого напряжения, устройство способно поддерживать стабильное напряжение на выходе вплоть до 1 В. Это положительно влияет на сам процесс изменения мощности, поскольку позволяет избежать резких перепадов и температурного перегрева оборудования.

Цена на такой прибор составляет около 1500 рублей.

Регулятор мощности РМ 2 16 А

Данный прибор был разработан специально для быстрого подключения и использования на промышленных и производственных предприятиях. Основные задачи регулятора заключаются в коррекции уровня освещения на объектах, изменении степени обогрева напольных покрытий, а также управлении скоростью вращения ряда двигателей коллекторного либо синхронного типа.

РМ 2 16 А может функционировать при входном напряжении, достигающим 400 В, также, как и РМ 2 способен поддерживать заданное стабильное напряжение до 1 В вне зависимости от колебаний этого параметра в электросети.

Средняя цена на данную модель составляет 2500 рублей.

Регулятор мощности РНЭ-1

Прибор предназначен для использования в быту и позволяет плавно осуществлять изменение напряжения в сети при помощи силового симистора, это дает возможность регулировать яркость ламп, мощность обогревателей и иного оборудования, которое способно по своим параметрам переносить изменение синусоидальной формы поступающего электрического тока.

Обладает защитой, которая представляет собой плавкий термический предохранитель. Функционирует данная модель при напряжении до 220 В.

цена на РНЭ-1 варьируется в рамках 1200-1400 рублей.

Регулятор мощности NF

Представляет собой не только полноценный прибор, но и своеобразный конструктор, который необходимо самостоятельно доработать перед началом использования. В комплектацию входит плата, схема и все необходимое для сбора симисторного регулятора мощности.

Готовый прибор можно задействовать в быту, как многофункциональное устройство, что обуславливается обширным диапазоном регулировки параметров.

Цена составляет около 1000-1200 рублей.

Недостатки ЗУ на тиристорах

У простой схемы есть существенный минус – отсутствие электронной защиты от переполюсовки, КЗ и перегрузок. Отчасти эту функцию выполняет плавкий предохранитель, что не очень удобно. При желании и достаточном опыте можно собрать дополнительную схему защиты и подключить её отдельно.

Второй недостаток – гальваническая связь настроечного блока с сетью. Его можно устранить, если использовать регулировочное сопротивление с пластиковой осью.

И ещё один минус – необходимость установки охлаждающих радиаторов (лучше использовать ребристые алюминиевые изделия). Частично проблема решается использованием схемы с включением регулирующего модуля в обмотку I питающего трансформатора.

Подводя итог, скажем, что тиристорное зарядное устройство своими руками собрать не так сложно, как может показаться с первого взгляда. Упорство и затраченное время будут вознаграждены недорогим качественным ЗУ с плавной регулировкой силы тока, продлевающей жизнь аккумулятору.

Работа с болгаркой (УШМ)

Углошлифовальная машина — травмоопасный механизм, поэтому требует внимательности. Несобранным, неуверенным или «косоруким» ее касаться нельзя:

  1. Защитный кожух, перчатки, плотные очки необходимо надеть перед работой. Вместо очков допускается использование закрытой маски.
  2. Можно использовать лишь «родной» съемный круг. Опасно устанавливать на малую болгарку большой круг, т.к. она вращается существенно быстрее. Поврежденные круги тоже исключены.
  3. Недопустима установка пильных кругов, которыми распиливают дерево.
  4. После запуска одну минуту надо проверить работу болгарки, держа ее на весу. Запускать обычный режим вращения и максимальный.
  5. Прочно удерживать инструмент обеими руками, принять надежное положение.
  6. При перемещениях всегда выключать болгарку.
  7. Выключать инструмент, если возникло замыкание электричества.

Резать, придерживаясь направления вращения. Чтобы направление движения и вращение всегда совпадало. Отпускать болгарку, когда она полностью затихла после выключения.

Болгарка — описание деталей инструмента

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема


1. Схема 1 тиристорного ЗУ


2. Простая схема для изготовления ЗУ


3. Схема тиристорного прибора Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Нюансы в конструкции

Регулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Тиристорный регулятор мощности с плавным пуском на 1000 Вт

Предыстория создания девайса такова. Задумал я как то покрасить крыло своего автомобиля. Приехал в гараж, подготовился. Так как погода была прохладная, то для быстрой сушки крыла его нужно было нагреть. Из подручных средств, для бесконтактной сушки, я не нашёл ни чего лучше чем прожектор ПКН мощностью 1 кВт.

Однако его лампа выдерживала 10-15 включений. А такую лампу в моём городе найти не такая уж легкая задачка. По этой причине я вооружился давно знакомой мне микросхемкой К1182ПМ1, двумя завалявшимися тиристорами и сделал устройство для плавного включения ПКН. Сначала было собрано устройство без внешних органов управления.

Но позднее я подумал, что такую мощную штуковину можно использовать не только как плавный пуск, но и как регулятор мощности для устройств, потребляющих чисто активную нагрузку. Например, электронагреватель. И тогда было принято решение «прикрутить» к устройству ещё и переменный резистор для ручной регулировки мощности.

Получалось следующее.

Схема устройства проста.

На ней к сети ~220 В последовательно подключается предохранитель на 8 А, нагрузка в виде лампы, и 2 тиристора Т142-80-4-2 включенные встречно параллельно.

Для того чтобы через цепи управления каждого из тиристоров, в нерабочий полупериод, не протекал ток управления, используется развязка из диодов КД411ВМ.

Это гарантирует правильную работу тиристоров во время рабочего полупериода сетевого напряжения.

Резистор 600 Ом используется для ограничения тока управления. А при помощи регулировочного резистора 68 кОм меняется мощность, отдаваемая в нагрузку (в моём случае в качестве нагрузки выступает прожектор).

Принцип работы устройства можно понять из рисунка. Для регулировки мощности изменяется угол открытия тиристоров. Чем больше угол α, тем меньшая часть синусоиды пропускается в нагрузку. Когда α = 1800 оба тиристора полностью закрыты и мощность в нагрузку не передаётся.

Когда α = 00 в нагрузку поступает вся синусоида полностью и соответственно передаётся полная мощность. В первый момент после включения нагрузки угол α всегда равен 1800. Далее он начинает плавно уменьшаться до значения соответствующего текущему положению регулировочного резистора.

За счёт этого и достигается плавный пуск.

Замечу, что данное устройство можно использовать только с активной нагрузкой, так как в случае реактивной нагрузки используются несколько иные способы регулирования мощности.

Максимально допустимый средний ток в открытом состоянии для данных тиристоров составляет 80 А. Не трудно подсчитать, что максимальная мощность, которую можно через них пропустить, равна Р=220*80=17600 Вт.

Однако это теоретическое значение, которое я не проверял на практике и поэтому не возьмусь утверждать что система выдержит мощность в 17 кВт. На практике мной подключалась нагрузка в 1 кВт. При этом радиаторы совершенно не грелись.

Такие большие радиаторы я применил только по той причине, что тиристоры уже были прикручены к ним. Поэтому для данной конструкции подойдут и радиаторы, гораздо меньшего размера.

На этой фотографии к устройству ещё не подключена розетка и сетевой шнур.

P.S. Первоначально печатка разводилась под другие диоды. Но потом жизнь внесла свои коррективы. Поэтому, даже если вы будете ставить диоды КД411ВМ, то печатку лучше переделать под их реальные размеры. Хотя у меня и так влезло

Разработано и изготовлено Дмитрием Чупановым ([email protected])

Скачать список элементов (PDF)

Экологические аспекты и аспекты эффективности

Эффективность любой системы зависит от определения границ системы. Для потребителя электроэнергии эффективность электрического отопления помещений составляет 100%, поскольку вся покупная энергия преобразуется в тепло. Однако, если включить электростанцию, поставляющую электричество, общий КПД резко упадет. Например, электростанция , работающая на ископаемом топливе, может поставлять только 3 единицы электроэнергии на каждые 10 единиц высвобожденной энергии топлива. Несмотря на то, что электрический обогреватель эффективен на 100%, количество топлива, необходимого для производства тепла, больше, чем если бы топливо было сожжено в или в отапливаемом здании. Если бы одно и то же топливо могло использоваться для отопления помещений потребителем, было бы более эффективно сжигать топливо в здании конечного пользователя. С другой стороны, замена электрического отопления обогревателями, работающими на ископаемом топливе, не является необходимым благом, так как лишает возможности использовать возобновляемое электрическое отопление, этого можно достичь, получая электричество из возобновляемых источников.

Различия между странами, производящими электроэнергию, влияют на озабоченность по поводу эффективности и окружающей среды. В 2015 году Франция вырабатывала только 6% электроэнергии из ископаемых видов топлива, в то время как Австралия производила более 86% электроэнергии из ископаемых видов топлива. Чистота и эффективность электричества зависят от источника.

В Швеции использование прямого электрического отопления было ограничено с 1980-х годов по этой причине, и есть планы полностью отказаться от него — см. Поэтапный отказ от нефти в Швеции — в то время как Дания запретила установку прямого электрического отопления помещений в новых зданиях. по схожим причинам. В случае новых зданий могут использоваться энергосберегающие методы строительства, которые могут практически устранить потребность в отоплении, например, построенные по стандарту Passivhaus .

Однако в Квебеке электрическое отопление по-прежнему является самой популярной формой отопления дома. Согласно исследованию Статистического управления Канады за 2003 год , 68% домохозяйств в провинции используют электричество для обогрева помещений. Более 90% всей электроэнергии, потребляемой в Квебеке, вырабатывается плотинами гидроэлектростанций , которые имеют низкие выбросы парниковых газов по сравнению с электростанциями, работающими на ископаемом топливе . Низкие и стабильные ставки взимает Hydro-Québec , коммунальное предприятие, находящееся в собственности провинции.

Для более эффективного обеспечения тепла тепловой насос с электрическим приводом может повышать температуру в помещении за счет извлечения энергии из земли, наружного воздуха или потоков отходов, таких как отработанный воздух. Это может снизить потребление электроэнергии до 35% от потребляемой резистивным нагревом. Если основным источником электроэнергии является гидроэлектростанция, атомная энергия или ветер, передача электроэнергии через сеть может быть удобной, поскольку этот ресурс может быть слишком удаленным для приложений прямого нагрева (за заметным исключением солнечной тепловой энергии ).

Электрификация тепла помещений и нагрева воды все чаще предлагается как способ обезуглероживания нынешней энергетической системы, особенно с помощью тепловых насосов . В случае крупномасштабной электрификации необходимо учитывать влияние на электросеть из-за потенциального увеличения пикового спроса на электроэнергию и подверженности экстремальным погодным явлениям.

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Как работает трансформатор

Как и в большинстве стабилизаторов напряжения, так и в приборе нашего типа главным элементом является автоматический трансформатор. Именно он осуществляет процесс нормализации тока.

Схема работы простейшего трансформатора

Для того, чтобы понять, каким образом трансформатор тиристорного стабилизатора стабилизирует ток, рассмотрим его строение. Этот главный элемент тиристорных приборов состоит из двух обмоток, а именно первичной и вторичной.

На первичную поступает входной ток. Далее этот ток проходит на вторичную обмотку и из нее попадает в любой электроприбор.

Обе обмотки представляют собой определенное количество витков проволоки. Количество витков на каждой из них может быть разным.

Рассмотрим работу обмоток на примере. Будем считать, что количество витков в обеих обмотках является равным 20. Если ток с напряжением в 200 вольт пройдет через 20 витков первичной обмотки и 20 витков вторичной обмотки, то на выходе он будет иметь такое же напряжение.

В том случае, когда он пройдет через 20 витков первой обмотки и 10 витков вторичной обмотки, напряжение на выходе будет не 200, а 100 вольт. Таким образом происходит уменьшение напряжения.

Для того, чтобы увеличить напряжение (в нашем случае 200 вольт до 220), нужно подключить еще один виток второй обмотки, т.е. ток должен проходить через 21 виток (в нашем примере это невозможно, поскольку вторая обмотка имеет только 20 витков). Таковым является общий принцип работы трансформатора.

На практике каждая обмотка имеет сотни витков. При этом максимальное количество витков во второй обмотке должно быть большим, чем количество витков в первой обмотке. Надобность этого отчетливо видна на вышеуказанном примере.

В вас может возникнуть вопрос, каким же образом можно подключать то или иное количество витков? Для того, чтобы можно было подключать определенное количество витков, производитель делает выводы от определенного витка второй обмотки.

Количество этих выводов может быть разным. Собственно на конце каждого такого вывода и находятся тиристоры. Они и осуществляют подключение определенного количества витков.

В результате получается так, что, когда нужно повысить напряжение, происходит подключение дополнительного количества витков. Когда стабилизатор напряжения, который относится к тиристорному типу, должен снизить напряжение, происходит отключение определенного количества витков.

Стоит обратить внимание на тот факт, что все витки являются как бы поделенными на группы. Подсоединение каждой из группы осуществляется через выводы

Грубо говоря, если количество витков равно цифре 100 и выводов пять, то подключение одного вывода означает, что ток проходит через 20 витков. В данном случае напряжение изменится на определенную фиксированную величину, то есть на определенную степень. Собственно такое изменение напряжения и называется ступенчатой стабилизацией.

На практике в некоторых стабилизаторах подключение одного определенного количества витков приводит к увеличению или уменьшению напряжения на 15-20 вольт. Чем больше выводов (то есть в отдельной группе становится меньше витков), тем на меньшую величину изменяется выходное напряжение при подключении одного вывода.

Подытоживая, отметим, что при росте/падении напряжения на входе происходит отключение/подключение определенного вывода второй обмотки благодаря работе тиристоров. Между переключениями обмоток наблюдается интересный факт: насколько меняется ток на входе, настолько же он меняется на выходе.

На практике выглядит так: на входе есть напряжение в 180 вольт и на выходе обеспечивается 220. Когда напряжение растет, например до 185, на выходе напряжение возрастает до 225-ти.

Далее происходит переключение обмотки и на выходе снова становится 220. Конечно, величина изменений выходного тока определяется особенностями различных моделей тиристорных стабилизаторов напряжения, которые используются дома.

Для этих стабилизаторов она может колебаться от 2 до 10 вольт.

Полезный совет: при переключении тиристоров можно будет заметить небольшое мерцание ламп накаливания. Данный факт является следствием вышеописанного процесса выравнивания тока и он не означает, что тиристорный стабилизатор сломался. Это стандартный режим его работы. В общем, тиристорные стабилизаторы обеспечивают уровень выходного напряжения, который колеблется в пределах 214-226 вольт. Это является высоким показателем их работы.

Регулятор взамен станции

Если оснастить примитивную схему управляющим модулем, получится подобие станции минимальной комплектации. Этого бывает вполне достаточно для небольшого объема работ. Маломощным паяльным инструментам до 25 Вт достаточно блок управления оснастить тиристором. Этот полупроводниковый элемент можно уместить куда угодно, для этого подойдет:

  • старый зарядник мобильного телефона;
  • корпус бытового адаптера, вышедшего из строя;
  • можно использовать розетку;
  • любой удлинитель;
  • ручку паяльника, если там поместится плата.

Важно правильно подобрать корпус регулирующего прибора, он должен быть пластичным, поддаваться механической обработке, склеиванию, обладать свойствами электрического изолятора. При конструировании регулятора напряжения, подводимого к мощным греющим элементам, для охлаждения греющихся при работе полупроводников умельцы используют готовый радиатор от видеокарты. Если регулирующий блок дополнить подставкой и держателем паяльника, получится самодельная мини-станция

Себестоимость такой самодельной конструкции будет намного ниже заводской цены. Готовые паяльные станции стоят от тысячи до 3000 рублей

Если регулирующий блок дополнить подставкой и держателем паяльника, получится самодельная мини-станция. Себестоимость такой самодельной конструкции будет намного ниже заводской цены. Готовые паяльные станции стоят от тысячи до 3000 рублей

При конструировании регулятора напряжения, подводимого к мощным греющим элементам, для охлаждения греющихся при работе полупроводников умельцы используют готовый радиатор от видеокарты. Если регулирующий блок дополнить подставкой и держателем паяльника, получится самодельная мини-станция. Себестоимость такой самодельной конструкции будет намного ниже заводской цены. Готовые паяльные станции стоят от тысячи до 3000 рублей.

Как избежать 3 частых ошибок при работе с симистором

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

Монтажные работы пошаговая инструкция

Монтажные работы

Перед проведением монтажа открытой проводки необходимо выполнить разметку ее проведения. Разметке подлежат не только линии прокладки проводов, но и места установки электроарматуры. Эта работа требует вдумчивого отношения, в противном случае все будет необходимо переделывать.

Вход электрической линии в дом

Самостоятельно подведение кабеля от ЛЭП в дом, самому лучше не выполнять. Это должны сделать специалисты из местной энергоснабжающей организации, именно они уполномочены выполнять работы подобного типа. Если будет обнаружено самостоятельное подключение, то высока вероятность привлечения к административной ответственности.  Кстати, это касается и воздушного подключения, и подземного.

Вход электрической линии в дом

Подводка электричества по воздуху хороша тем, что этот способ не требует больших затрат времени и денег. Но, к сожалению, не все дома могут быть подключены таким способом. Ввод силового провода должен быть выполнен на высоте не меньше чем 2,75м. Если высоты недостаточно, на стене должен быть установлен электрический щиток, с вмонтированным в него устройством УЗО.

Установка распределительного щитка

Распределительный щиток фиксирую на стене при помощи саморезов. В нем должны быть установлены DIN-рейки, на которые будут установлены все устройства. Монтаж должен выполняться в соответствии с заранее подготовленной схемой.

Установка распределительного щитка

В щитке устанавливают автоматы, УЗО и электрический счетчик. Все приборы установленные в счетчике должны быть подписаны.

Укладка кабеля

Укладка проводов через стены должна выполняться только через специальные гильзы.  Они могут быть выполнены из полимеров или металла. Для их установки необходимо проделать отверстия по размеру гильзы. Ее необходимо установить таким образом, что бы торцы выступали на 1 сантиметр от стены. После того, как гильза установлена в стену, на ее края необходимо надеть защитные втулки, которые будут предохранять провода от повреждения.

Укладка кабеля

После того, как установлены приспособления для проведения проводов, можно выполнять укладку проводов в соответствии с заранее размеченной трассой.

Для открытой проводки целесообразно использовать негорючий кабель.

Монтаж распределительных коробок

В местах, где планируется разведением проводки к точкам подключения необходимо устанавливать распределительные коробки. их выполняют из полимерных, огнестойки материалов. К стене их фиксируют с применением саморезов или другого крепежа.

Монтаж распределительных коробок

Установка выключателей и розеток

При проведении открытой проводки можно использовать только те выключатели и розетки, которые для этого предназначены. Под ними должно быть установлено негорючее основание, на которые в последствие и устанавливают необходимые приборы.

Установка выключателей и розеток

Установка заземления (ЗУ)

В установленном щитке шина РЕ выполнят задачи главной заземляющей шины. К ней должны быть подключены все повторные заземляющие устройства.

Установка заземления в деревянном доме

ЗУ (заземляющее устройство) должно быть установлено в земле, недалеко от стены дома.

Это устройство представляет собой несколько металлических прутков с диаметром 16 мм и длиной порядка 3 метров. Их сваривают между собой при помощи стальной полосы 40х4 мм. Эта же полоса должна использоваться для подключения к щитку установленному в доме. Для подключения ЗУ используют одножильный провод, диаметр которого должен быть не менее диаметра кабеля, который смонтирован на входе в дом.

Конструкцию, установленную в землю, окрашивать запрещается.

По окончании установки ЗУ необходимо проверить электрическое сопротивление. Оно не должно быть больше чем 8 Ом для сети 220 В и 4 Ом для сети 380 В.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: