Простой лабораторный блок питания на lm317

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична

Импульсный трансформатор

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

Схема простого БП

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Печатная плата простого БП

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения

Двухполярный ИП на транзисторах

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Схема импульсного блока питания

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится

Скачать печатную плату стабилизатора на LM317

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

KaSper-43 › Блог › Блок питания на LM 317T

Для тех, кого не пугает наличие некоторого количества знакомых букв продолжаю. И так, пока не упрятал все в корпус по причине его отсутствия, представляю вашему вниманию очередную поделку — блок питания на LM 317Т. Выглядит конечно не по фэншую, но работает. Красоту наведу когда подходящий корпус найду. Вот схема.

LM 317Т в ТО-220 корпусе способна работать от 1,2 до 37 В с током до 1,5 А. Думаю что для околоавтомобильных поделок напряжения вполне достаточно, впрочем, как и тока. Если нужно ток больше, то в инете есть схема на LM 338Т до 5 А. Можно конечно купить и фабричный китайский блок питания, но цена у них “кусачая”, да и самое главное-гарантия всего максимум 6 месяцев. Кто же знает чего там в красивую коробку раскосые ребята положили. Полазив по своим амбарам и поскребя по сусекам, нашел вот такой трансформатор. Первичная обмотка на

220 В. Две вторичных — на

14 В с копейками и на

4,7 В вроде. По мощности конечно не такой как хотелось, ну да ладно-при случае заменю. Сейчас задействовал только одну вторичную обмотку. С ее помощью на выходе блока снимается постоянное напряжение от 1,3 до 21,1 В.

Как обычно начертил плату. Для гурманов представлю два вида. Значок светодиода на плате показан условно, только для обозначения подключения. Полярность проверяйте при монтаже.

Вытравил ее всем известным способом.

Список использовавшихся деталей за исключением светодиода.

В качестве радиатора коммутатор от Ваз 2109. Вот видео блока питания в сборе.

Комментарии 32

Мне кажется это все влезет в корпус от бп компьютера+можно кулер приколхозить.Ну или слепи корпус из ПВХ пластика(можно попросить в любом супермаркете) как на фото, только под размеры

Лм 388 в эту же схему ставится?без изменений?

Если чисто, то да, её максимальный ток 1.5А и то, КПД низкий, тобишь при нагрузке в 500мА уже будет греться что дурноватая. А вот если умощнить полевиком, то выходной ток можно увеличивать до 6-8А

Я тоже собираю себе БП но чучуть посерьёзнее. Но в базе БП тоже LM317. Но я себе ещё сделал регулировку тока на операционнике, и много чего ещё.

Вот схема, но она ещё до конца не рассчитана и ещё на стадии разработки. vk.com/cobraextreme?z=pho…2Falbum132309303_00%2Frev

Из LM317 много не вытянуть. Сейчас есть другие микросхемы стабилизаторов напряжения. Более достойные.

Я тоже собираю себе БП но чучуть посерьёзнее. Но в базе БП тоже LM317. Но я себе ещё сделал регулировку тока на операционнике, и много чего ещё.

Вот схема, но она ещё до конца не рассчитана и ещё на стадии разработки. vk.com/cobraextreme?z=pho…2Falbum132309303_00%2Frev

собирать такую схему это как велосипед изобретать, как правило для обычных работ достаточно LM317 ну чего надо ну лампу проверить, моторчик, светодиод, и т.д. все мелочные дела при должном охлаждении прекрасно снимается 1А тока чего с лихвой у меня 2 собраны на 317-ых 1 миниатюрный до 18В на базе импульсного питальника от принтера + LM317, второй транс ТОР на 2А + та же LM317 этот до 30 вольт вот и всего делов, собирается за вечер из подножного а кому уж нужна мощь то пожалуйста, за час переделывается блок питания компа в регулируемый и таких у меня тоже 2, первый — 15А 1-25В а второй — 10А 1-48В цена почти нулевая только на индикацию вольт/амперметр а городить по вашей схеме это занятие СТРУЙНЁЙ! да и еще, мощные лабораторники достаю 1-2раза в год потому как они нафиг ненужны и еще лежат компьютерных переделанных в регулируемые штук 5 без корпусов только платы эксперементировл на разных моделях может задарю кому или пусть в прок лежат

Схемотехническое решение

Развитие современной микроэлектроники позволяет создавать устройства с требуемыми параметрами с использованием минимума элементов. Довольно хорошо зарекомендовали себя устройства токовых генераторов на интегральной микросхеме LM317. Вообще данная микросхема представляет собой интегральный стабилизатор напряжения, но некоторые изменения в стандартной схеме включения, кстати, оговоренные в технической документации, позволяют использовать данную ИМС в качестве источника тока, в том числе для питания светодиодов.

Обозначение переменного тока

Параметры микросхемы следующие:

  • Напряжение – 1.2-37В;
  • Ток через ИМС – до 2А в случае использования LM317T.

Различными производителями выпускается множество разновидностей данного стабилизатора, но разница в стоимости и габаритах для минимальной и максимальной мощностей ничтожна, поэтому есть смысл использовать максимально доступную мощность, запас которой никогда не помешает.

Важно! При использовании мощного стабилизатора тока для светодиодов при нагрузке, близкой к максимальной, обязательно использование радиатора, который позволит отбирать выделяемое интегральной микросхемой тепло. Итак, самый простой, но надежно работающий стабилизатор тока на микросхеме lm317 для светодиодов представлен ниже

Итак, самый простой, но надежно работающий стабилизатор тока на микросхеме lm317 для светодиодов представлен ниже.


Простейший стабилизатор

В данной схеме микросхема имеет лишь один резистор во внешней обвязке. Именно при помощи его задается значение выходного параметра. Делается это по формуле:

R=1.25/I.

Данный вариант стабилизатора работает в диапазоне значений от 0.01 до 1.5А. Верхний предел ограничивается мощностью микросхемы. Мощность, которая рассеивается на резисторе, может составлять несколько ватт при максимальном токе. Более точно она определяется из выражения:

P=I2R.

Важно! При значениях более 0.3А применение радиатора охлаждения для микросхемы обязательно!

Добавив в схему всего два элемента: мощный транзистор и резистор, можно поднять выходной ток до 10А.


Мощный стабилизатор

В приведенной схеме применяется мощный составной транзистор КТ825 с любой буквой. Резистор R2 выполняет ту же функцию, что и в предыдущей схеме, и рассчитывается точно так же. Поскольку по нему протекает высокий ток, а значение сопротивления малое, то следует использовать проволочный. Резистор R1 задает смещение на базе транзистора и должен иметь рассеиваемую мощность 0.25-0.5Вт.

В обеих схемах напряжение питания источника (входное напряжение) может составлять от 3 до 38В. Для поддержания необходимого тока во всем диапазоне нагрузок напряжение питания следует обеспечивать приближенное к максимальному значению.

Пример. Пусть задано 20мА. Тогда при одном подключенном диоде напряжение на выходе будет составлять около 2-3В (в зависимости от типа светодиода). Если включить два последовательных светодиода, то для обеспечения необходимого тока 20мА схема выдаст уже ровно в два раза большее напряжение. Аналогичные подсчеты можно произвести для любого количества элементов.

Необходимое входное напряжение можно получить при помощи понижающего трансформатора с мостовым выпрямителем и конденсатором фильтра.


Выпрямитель

Диоды должны быть рассчитаны на необходимый ток, а емкость конденсатора нужно брать порядка нескольких тысяч микрофарад.

Важно! Рабочее напряжение конденсатора должно превышать напряжение питания примерно в полтора раза, то есть в данном случае оно должно быть не менее 50В. Автомобиль имеет напряжение бортовой сети не более 14В

Поскольку частота пульсаций здесь выше, чем в домашней сети, а амплитуда невысока, то емкость конденсатора может быть меньше. Также и рабочее напряжение может составлять 25В. Разумеется, выпрямительный мост здесь не нужен

Автомобиль имеет напряжение бортовой сети не более 14В. Поскольку частота пульсаций здесь выше, чем в домашней сети, а амплитуда невысока, то емкость конденсатора может быть меньше. Также и рабочее напряжение может составлять 25В. Разумеется, выпрямительный мост здесь не нужен.

Как видно, сделать стабилизатор тока для светодиодов своими руками – задача несложная. Важны аккуратность, внимательность и минимальные навыки работы с электроникой.

Настройка делителя однополярного напряжения.

Правильно собранная схема начинает работать сразу. Резистор R3 предназначен для установки равенства выходных двухполярных напряжений. Его настройку удобнее делать на двухлучевом осциллографе, подключив двухполярные выходы устройства ко входам осциллографа и включив режим взаимного вычитания сигналов. Вращая шлиц потенциометра устанавливают максимальное вычитание сигналов. В случае появления «биений» выходного напряжения в результате возбуждения и самогенерации, необходимо уменьшить значение резистора R5, увеличив при этом обратную отрицательную связь.

Микросхема К140УД7 ограничена по питанию до 15 вольт в «плече», поэтому для получения больших выходных напряжений необходимо подключать питание к выводам 4 и 7 через «добавочные» стабилитроны, но при этом возрастёт и нижний уровень выходных напряжений.

В данной микросхеме предусмотрена возможность регулировки баланса нуля с помощью внешнего подстроечного резистора. При изменении напряжения питания, её необходимо регулировать, поэтому мы её в своей схеме не используем.

По нестандартности решения, устройство, предназначенное для получения двухполярного напряжения из однополярного уникально. По своей простоте и надёжности схемы, это самый лучший способ получения двухполярного питания.

Зачастую для работы многих схем требуется двухполярное напряжение питания — однополярное с средней точкой. Т.е. когда за «Землю» принимается не минусовой вывод источника питания, а ровно половина выходного напряжения. Тогда получается относительно земли два напряжения +U и -U равной, по модулю величины.

Характерной особенностью правильного двухполярного источника питания является равные величины без знака +U и -U ВСЕГДА — если посмотреть двухлучевым осциллографом форму выходных напряжения, то пульсации сетевой частоты, а она всегда есть в реальном источнике питания, симметричны. Под влиянием недостаточной фильтрации пульсаций при увеличении +U, на столько же уменьшается и -U, для выполнения условия модуль(+U) = модуль(-U). После выше изложенного у вас закрался ответ на вопрос, зачем применяют двухполярные источники питания?

Ответ прост — для устранения влияния пульсаций питающего напряжения. Как бы мы не пытались спроектировать хороший фильтр с максимальныи КПД, сглаживающий пульсации после выпрямителя, например увеличением номиналов электролитических конденсаторов, применением активных фильтров на транзисторах, существуют устройства, для которых полученные значения уровня пульсаций все равно не приемлемы. Например приемники прямого преобразования, в состав которого входит усилитель низкой частоты с коэффициентом усиления ~ 100000, т.е. на его вход подается сигнал с уровнем ~ 1..10мкВ.

Типичным потребителем двухполярного напряжения питания являются операционные усилители. Правда их можно включить в схему и из однополярным напряжением питания, но в этом случае теряются приемущества двухполярного. В любом даташите на ОУ можно найти параметр «Supply-voltage rejection ratio», значение которое находится в пределах обычно 80 .. 100 дБ. Выражает соотношение изменение напряжение питания к изменению напряжения на выходе ОУ, выраженное в децибелах. Проще говоря коэффициент подавления пульсаций напряжения питания. Коэффициент подавления пульсаций фильтра однополярного источника питания значительно ниже.

Собственно схема преобразования однополярного напряжения в двухполярное представлена ниже. Это один из возможных вариантов. Популярна так же схема с двумя диодными мостами и одной вторичной обмоткой трансформатора. Но в моем устройстве трансформатор вынесен из корпуса, и на вход подается уже выпрямленное напряжение, так что…

Транзисторы Q1 и Q2 BD139 BD140 следует заменить на другие с достаточным коэффициентом уситения по току h21э. Я применил BDX33 BDX34 дарлингтона с значением 750. Операционный усилитель можно применять практически любой. Например LM358. В данном случае я применил который валялся под рукой — NE5532. Он сдвоенный, как видно из схемы. Триммером RV1, который должен быть многооборотным, выставляем половину напряжения питания.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно

Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%. Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания

В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: