Какие бывают
Существует несколько видов выключателей. Это автоматические устройства с сенсором движения, механические и электронные.
Автоматические с датчиком движения
Для автоматического выключения используются следующие датчики движения:
- акустические (реагируют на звук);
- инфракрасные (реагируют на ИК излучение от тела);
- ультразвуковые;
- микроволновые.
Первые два вида не излучают ничего и являются пассивными устройствами. Последние два – активные, они посылают волны в помещение в попытке обнаружить объект. Пассивные модели стоят дешевле, они проще по конструкции, но могут ложно реагировать.
ИК выключатели реагируют на тепло человека. Но также срабатывают на тепло животных и нагретые батареи. Они требуют тщательной настройки и установки в место, где не действуют отопительные системы.
Электронные и механические
К электронным относят приборы с различными датчиками: движения, освещения. Также электронные функционируют от пульта дистанционного управления, с телефона или планшета по Wi-Fi или радиосигналу.
Радиус действия пульта определяется от общей планировки помещения, индивидуальных особенностей комнаты и типа материалов, на которых устанавливаются рабочие составляющие. Недостаток приборов с пультом – периодически нужно заменять батарейку. Область действия составляет 25 метров.
Что из себя представляют подобные выключатели
Сенсорный выключатель Суть их – отсутствие механических, движущихся частей в составе прерывателей или активаторов сигнала либо тока. Отдача команды в упрощенном виде производится легким касанием или приближением к контактной площадке части человеческого тела.
Некоторые устройства подобного плана оснащены регуляторами передаваемой мощности, что позволяет увеличивать или уменьшать силу тока в зависимости от положения точки соприкосновения к поверхности выключателя. Применять подобные технологические нюансы в действительности очень удобно, к примеру, для установки яркости света лампы.
Применение в быту
Размещаются сенсорные выключатели не только вместо стандартных на стенах, с целью контроля подачи тока к освещению, но и на розетках питания бытовой техники, для увеличения безопасности их использования.
Главным плюсом не механической системы отключения или подачи тока служит ее надежность и долговечность. Нет движущихся частей и периодически соединяемых или разрываемых в местах контакта коннекторов, соответственно отсутствует износ или искра, ведущая к порче проводящих площадок.
Конструкция прибора довольно проста для повторения, чтобы собрать сенсорный выключатель своими руками, а не приобретать его по запредельным ценам от стороннего производителя.
Самодельный сенсорный выключатель
Принцип работы устройства
Основой конструкции любой схемы сенсорного выключателя служит датчик приближения или касания, сигнал от которого усиливается и, в зависимости от текущего состояния всей системы (включено, выключено), производит разрыв линии течения тока или ее соединение. Для этого действия применяется дополнительный силовой контур в виде электронного ключа или реле.
Самые распространенные варианты датчиков, используемых в быту для схем сенсорных выключателей света или любых других потребителей тока 220 вольт, – индукционные, инфракрасные и звуковые. У каждого из них есть свои положительные и отрицательные моменты при применении.
Схематично сенсорный выключатель можно представить системой в не проводящем корпусе, на котором находится контактная площадка, соприкасающаяся с датчиком, или же поверхность, пропускающая требуемый внешний сигнал, на который он должен реагировать. Внутри расположена основная управляющая схема, где размещен усилитель и силовой модуль.
Один из вариантов структуры и строения сенсорных устройств включения
Плюсы и минусы конструкции
Единственным минусом сенсорных выключателей называют их большую стоимость относительно обычных, механических устройств коммутации. С другой стороны, неоспоримые плюсы использования позволяют забыть об этом отрицательном нюансе применения:
- Пожарная безопасность, которая намного выше, чем у обыкновенных выключателей – нет периодически соприкасающихся контактов с возникновением искры, а значит и риска их возможной спайки или возгорания корпуса устройства.
- Легкость применения – приведение в действие не требует никаких физических усилий.
- Бесшумность и мгновенная реакция на команду от пользователя.
- Возможность выполнения в абсолютно не пропускающем влагу корпусе, что также понижает риск возгорания в результате замыкания, или же уменьшает вероятность поражения электрическим током человека.
Внешний вид одного из производимых промышленностью сенсорных выключателей
- Долговечность, обеспечиваемая отсутствием механических элементов.
- В одном корпусе можно использовать несколько датчиков и схем их обработки, делая мультисенсорные панели.
- Конструкция проста для сборки сенсорного выключателя света или электроприборов 220В своими руками.
Охранные объемные оптико-электронные датчики
В отношении секторов выявления пассивные ИК оповещатели дают возможность применять самые разнообразные принципы: объемный, поверхностный (штора) и линейный (спектр).
Активные функционируют по заключительному (линейному) варианту.
Фактически все они относятся к извещателям перемещения, т.е. выявляют изменение положения объекта в пространстве подконтрольного им сектора. Для линейных и поверхностных уместнее станет сказать о пересечении сектора выявления.
Использование поверхностных оптико-электронных оповещателей обычно ограничено дополнительной изоляцией строительных объектов внутри комнат. Линейные нередко применяются для охраны наружных границ открытых (уличных) территорий. Причем для увеличения эффективности защиты используются приборы, образующие нескольку спектральных преград.
В некоторых ситуациях комфортным способно стать использование потолочных инфракрасных датчиков. Для определенных внутренних пространств они дают возможность почти целиком избежать неохраняемых участков территории.
Из-за особенностей функционирования оптико-электронные приборы весьма болезненно воспринимают:
- • засветку восприимчивых составляющих разными чужеродными источниками: от света фар транспортного средства, до света дневного светила;
- • наличие в секторе выявления нарушителя конвекционных потоков воздуха (сквозняков, тепловых вентиляторов, конвекторов и др.).
Между прочим, на активные линейные оповещатели указанные факторы оказывают намного меньшее влияние. Однако они обладают иным минусом – трудностью в регулировке (юстировке) оптической системы. В первую очередь это касается устройств с приличной дальностью действия.
Работа пульта-тестера на практике
Пришло время протестировать наш пульт-тестер. Включаем питание, берем пульт от телевизора и наводим его прямо на TSOP, а именно на выпуклую часть корпуса. Для некоторых пультов приемник будет очень чувствительным (он будет принимать передачу с большого расстояния). Иногда может возникнуть необходимость переместить пульт дистанционного управления на небольшое расстояние — это связано с созданием определенного стандарта дистанционного управления и связи.
Кстати, стоит обратить внимание на фиолетовую точку на корпусе пульта ДУ — это ИК-диод, свечение которого зафиксировала цифровая камера (включите камеру). Красный светодиод загорается только при нажатии кнопки на пульте дистанционного управления
Обратите внимание, дальность действия нашего пульта дистанционного управления настолько велика, что приемник заметит передачу, даже если мы его спрячем за своей спиной. Свет, излучаемый ИК-диодом, выходит из пульта дистанционного управления, отражается от препятствий и возвращается к приемнику.
Работа пульта-тестера
Описание работы системы дистанционного управления на ИК лучах
Для дистанционного управления приборами применяется следующий механизм. На ПДУ нажимают и держат произвольную кнопку в течении 1 секунды. На непродолжительное нажатие (например во время управления музыкальным центром) система не откликается.
Для того, чтобы исключить отклик телевизора на управление приборами, необходимо выбирать не применяемые кнопки на ПДУ или применить пульт от выключенного в это время прибора.
Принципиальная схема дистанционного управления изображена на рисунке 1. Специальная микросхема DA1 усиливает и формирует электросигнал фотодиода BL1 в электроимпульсы. На радиоэлементах DD1.1 и DD1.2 построен компаратор, а на радиоэлементах DD1.3, DD1.4 — генератор импульсов.
Состояние системы управления (включена или выключена нагрузка) контролирует триггер DD2.1. В случае если на прямом выходе данного триггера лог 1, генератор будет функционировать на частоте примерно 1 кГц. На эмиттерах транзисторов VT1 и VT2 появятся импульсы, которые сквозь емкость С10 поступят на контролирующий вывод симистора VS1. Он будет отпираться в начале каждого полупериода сетевого напряжения.
В первоначальном положении на контакте 7 микросхемы DA1 находится лог 1, емкость С5 заряжена сквозь сопротивления R1, R2 и на входе С триггера DD2.1 лог 0. Если на фотодиод BL1 идут сигналы ИК излучения с пульта дистанционного управления, на контакте 7 микросхемы DA1 окажутся сигналы, и емкость С5 будет разряжаться сквозь диод VD1 и сопротивление R2.
Когда потенциал на С5 снизится до нижнего уровня компаратора (через 1 секунду или более), компаратор переключится и на ввод триггера DD2.1 поступит сигнал. Состояние триггера DD2.1 поменяется. Так совершается переключение приборов из одного состояния в другое.
Микросхемы DD1 и DD2 возможно использовать схожие из серий К564, К176. VD2 — стабилитрон на напряжение 8-9 вольт и ток более 35 мА. Диоды VD3 и VD4 — КД102Б или схожие. Оксидные емкости — К50-35; С2, С4, С6, С7 — К10-17; С9, С10 — К73-16 или К73-17.
ИК-связь
Для связи можно использовать инфракрасный порт. В связи с этим стоит пояснить еще одну концепцию, которая может быть для некоторых новой. Передача в контексте коммуникации — это передача информации между двумя устройствами. Чаще всего это сообщение представляет собой последовательность нулей и единиц, понятную получателю.
Пример трансляции — управление телевизором с помощью специального пульта ДУ. После нажатия кнопки, пульт передает на телевизор последовательность из нескольких битов (нулей и единиц). Приемник обнаруживает соответствующую последовательность импульсов, интерпретирует ее и выполняет запрошенную задачу.
Этот стандарт связи чрезвычайно удобен, поэтому он также очень активно используется любителями электроники. Обычный пульт от телевизора может быстро стать, например, контроллером для нашего робота, созданного на основе Arduino.
Пироприемник и помехи
Пироэлектрический преобразователь – это полупроводниковое устройство, которое способно регистрировать разницу в температурах и преобразовать ее в электрический импульс.
В таких датчиках используются пары, а в некоторых моделях две пары пироэлектрических элементов. Это позволяет снизить количество ложных срабатываний, которые вызывает простое повышение температуры в помещении.
В парных пироприемниках срабатывание происходит только когда пересекаются один из лучей, обработка происходит по дифференциальному алгоритму, вычитая сигнал одного пироэлемента из сигнала другого.
Основные виды помех, которые могут вызвать ложное срабатывание встраиваемых ИК датчиков движения:
- насекомые, попавшие внутрь или на корпус датчика;
- домашние животные;
- вибрации и сотрясения;
- радио и электромагнитные помехи;
- направленные и яркие источники света;
- кондиционеры, батареи, тепловые завесы и другое климатическое оборудование;
- частичное отражение ИК-лучей от внутренней поверхности устройства;
- нагревание внутренних деталей детектора.
Какие бывают
Существует несколько видов выключателей. Это автоматические устройства с сенсором движения, механические и электронные.
Автоматические с датчиком движения
Для автоматического выключения используются следующие датчики движения:
- акустические (реагируют на звук);
- инфракрасные (реагируют на ИК излучение от тела);
- ультразвуковые;
- микроволновые.
Первые два вида не излучают ничего и являются пассивными устройствами. Последние два – активные, они посылают волны в помещение в попытке обнаружить объект. Пассивные модели стоят дешевле, они проще по конструкции, но могут ложно реагировать.
ИК выключатели реагируют на тепло человека. Но также срабатывают на тепло животных и нагретые батареи. Они требуют тщательной настройки и установки в место, где не действуют отопительные системы.
Электронные и механические
Механические выключатели работают от прикосновения. Человек должен воздействовать на клавишу, чтобы появился свет. Есть комбинированные выключатели – работают автоматически от движения или пульта и механически. К электронным относят приборы с различными датчиками: движения, освещения. Также электронные функционируют от пульта дистанционного управления, с телефона или планшета по Wi-Fi или радиосигналу.
Радиус действия пульта определяется от общей планировки помещения, индивидуальных особенностей комнаты и типа материалов, на которых устанавливаются рабочие составляющие. Недостаток приборов с пультом – периодически нужно заменять батарейку. Область действия составляет 25 метров.
Бесконтактный инфракрасный выключатель света на микроконтроллере ATtiny13. Схема
Популярные инфракрасные барьеры реагируют на пересечении луча между передатчиком и приемником. Однако в некоторых ситуациях установка двух модулей напротив друг друга затруднена или даже невозможна.
В данной статье представлено устройство лишенное этого недостатка. Данный бесконтактный инфракрасный выключатель будет полезен в местах, где включение освещения или вентиляции необходимо в течение короткого времени.
Схема рассчитана на управление нагрузкой питаемой от электросети 220 В. Бесконтактный выключатель срабатывает при обнаружении инфракрасного луча отраженного от объекта.
За функциональность инфракрасного выключателя отвечает микроконтроллер Attiny13. Он периодически каждые 10 мс генерирует 30 импульсов подаваемых на ИК-диод. Эти импульсы имеют частоту около 36 кГц и заполнение 2%, благодаря чему расход энергии небольшой. Конденсатор C5 улучшает скорость изменения напряжения на ИК-диоде, в частности, когда транзистор VT1 выходит из состояния насыщения.
Если часть излучаемого света отражается от приближающегося объекта, приемник TSOP4836 подает демодулированный сигнал на вход микроконтроллера. Одновременно с этим АЦП микроконтроллера считывает величину напряжения с потенциометра (время включения) и подается питание на светодиод оптрона. Время включения настраивается с шагом в одну секунду в диапазоне 10 … 1033 сек, то есть примерно до 17 минут.
В данной схеме оптрон установлен не для гальванической развязки, так как вся схема все равно питается от бестрансформаторного источника питания. Его роль – правильное управление триаком BT137, а именно включение его в обеих полуволнах сетевого напряжения.
В качестве оптрона выбран MOC3063, поскольку для его включения необходим наименьший (из всего семейства) ток — 5 мА. Тесты показали, что и с MOC3062 (необходимо 10 мА) схема работает хорошо.
Бестрансформаторный источник питания спроектирован таким образом, чтобы обеспечить напряжение около 5В, необходимое для правильной работы микроконтроллера. Резисторы R1 и R2 разряжают конденсатор C1 после выключения питания, в то время резисторы R3…R5 ограничивают протекающий ток через конденсатор при включении питания.
Последовательное соединение резисторов обеспечивает их нормальную работу при высоком напряжении. Кроме того, в случае пробоя конденсатора С1, один из резисторов R3…R5 сработает как предохранитель и прервет цепь. Выпрямленное напряжение с диодного моста стабилизируется стабилитроном и сглаживается конденсаторами.
Схема инфракрасного барьера собрана на односторонней печатной плате с размерами 38 мм × 45 мм. Размеры платы позволяют установить устройство в электрическую распределительную коробку диаметром 60 мм.
Сборку бесконтактного инфракрасного выключателя начинают с установки SMD компонентов. Далее все остальные элементы, начиная с двух перемычек из проволоки.
При программировании микроконтроллера ATtiny13 фьюзы необходимо оставить по умолчанию, за исключением CKDIV8, который должен быть отключен. ИК-диод и фотоприемник должны быть расположены снаружи устройства и изолированы друг от друга перегородкой, предотвращающей засвета.
Стоит отметить, что большой номинал резистора R6, ограничивающего ток светодиода, был обусловлен ограничением прямого влияния светодиода на фотоприемник. При данных значениях элементов активация устройства происходит на расстоянии около 15 см.
Внимание! Поскольку все компоненты на печатной плате не имеют гальванической развязки с электрической сетью, важно соблюдать правила безопасности при запуске и эксплуатации оборудования. Скачать рисунок печатной платы и прошивку
Скачать рисунок печатной платы и прошивку
Источник
Проверяем работоспособность
Схема простая, см мануал. И у датчика и у приёмника есть клеммы питания (AC или DC от 12 до 24 вольт — проверил и то и другое — работает). Плюс у приёмника три контакта реле выведены на колодку — общий, нормально разомкнутый и нормально замкнутый.Упомянутого джампера нет и хорошо. Просто реле выведено на три контакта — общий, нормально замкнутый, нормально разомкнутый — выбирай по потребности. Собираем макет — приёмник и передатчик. Между ними примерно 6100 мм. Оба на высоте 200 мм от пола по центру, как и рекомендовано в мануале Видно, что при пересечении луча лампа зажигается. Причём если идти сквозь луч, то срабатывания два — от обеих ног. Во второй части клипа я оценил зону срабатывания, на равном удалении около 3 м от приёмника и передатчика прерывая луч отвёрткой. Именно здесь должно быть самое нечёткое пятно из соображений симметрии. Но пятно срабатывания получилось не более сантиметра по вертикали и горизонтали. А срабатывает на мелкую отвёртку, ширина шлица 3 мм. Видео, как обычно, у меня начисто лишено художественной ценности, но документирует эксперимент. Звук тихий, но слушать там особо и нечего. Отмечу разве, что в ночной тиши реле щёлкает весьма отчётливо.
Ещё (вне кадра) тестил различные предположительно прозрачные в ИК предметы. Толстая ПЭ крышка от икеевсого ящика оказалась полностью невидима для датчика. То есть при желании его можно спрятать дополнительно.
Для схемы «О питании электроламп через диод»
В последнее пора авторы все чаще выступают против использования диода в цепи питания ламп накаливания. Аргументы разные — от экономии электроэнергии до сохранения здоровья . Да, лампы с диодом мерцают, это видно. Но для освещения помещений можно предложить схему включения двух ламп в одном плафоне (рис.1).По моим наблюдениям, очки носят в основном те люди, которые любят ослепительный искусственный свет и на экранах своих телевизоров устанавливают неестественно большую яркость. Возможно, это не причина, а следствие, настаивать не буду, но остывание металла происходит нелинейно (рис.2), и выход температуры спирали из видимой зоны происходит стремительней, чем из зоны инфракрасного излучения. Увеличение КПД лампы повышением температуры приводит к сокращению времени работы
Думаю, что если лампочки будут иметь КПД не 10%, а 9%, то это не так важно, как ставшие уже привычными регулярная замена ламп и нервотрепка по этому поводу. Терморегулятор рябушка схема Не спорю, когда говорят об экономии лампочек, электроэнергии и здоровья людей, важны комплексные подходы, которые просматриваются в
Но если пристальнее исследовать проблемы экономии, то становится ясной истинная причина наших бед. Во всем виноват не многострадальный диод, а наша тотальная неосведомленность в вопросах разумного использования электроэнергии. Добиться трехкратной экономии электроэнергии на освещении можно локализацией (применением местного освещения, например, настольных ламп), а также использованием ламп дневного света с большим послесвечением люминофора, как это давнехонько уже делают за рубежом. Дело ещё в том, что тепло лампочки никуда не пропадает. А используется… для обогрева. Все верно, 90% энергии, потребляемой лампами накаливания, выделяется в виде инфракрасного излучения, тепла. В работе это тепло… Смотреть описание схемы …
Принцип работы инфракрасного датчика
Инфракрасный датчик откликается на любое изменение теплового поля в сканируемой зоне. Детекторы регистрируют каждый объект, который излучает тепло: человек, животное или любой перемещающийся объект, у которого температурное поле разнится с фоновым. Сенсор детектора фиксируют инфракрасные волны, которые собираются посредством встроенной в него системы линз. По электрической схеме напряжение сенсора идёт через транзистор, затем переходит реле. Релейные контакты разомкнуты, когда детектор выполняет сканирование. Если в зону сканирования попадает объект, изменяется уровень освещенности сенсора инфракрасным излучением, что приводит к замыканию релейных контактов. В результате загорается лампочка или светильник.
Схемы сборки
В зависимости от функционала и опций хлопкового выключателя может быть много разных схем сборки. Самая простая:
- Для получения сигнала (нескольких хлопков нужной громкости и частоты) применяется микрофон.
- Передачей через каскад из деталей выполняется усиление сигнала.
- Посредством компаратора на сигнал после усиления накладывается проверка по пороговому значению, чтобы отсеять шумы или посторонние звуки.
- Для превращения сигнала в электрический импульс требуется его трансформация через конвертацию в длинный сигнал посредством компаратора.
- При первом попадании в цепь выключателя на схеме будет засвечиваться светодиод при соответствии сигнала нужному хлопку. Это выполняется подведением к обнуляющемуся десятичному счётчику реле или светодиода.
Фото схем:
Какие бывают
Существует несколько видов выключателей. Это автоматические устройства с сенсором движения, механические и электронные.
Автоматические с датчиком движения
Для автоматического выключения используются следующие датчики движения:
- акустические (реагируют на звук);
- инфракрасные (реагируют на ИК излучение от тела);
- ультразвуковые;
- микроволновые.
Первые два вида не излучают ничего и являются пассивными устройствами. Последние два – активные, они посылают волны в помещение в попытке обнаружить объект. Пассивные модели стоят дешевле, они проще по конструкции, но могут ложно реагировать.
ИК выключатели реагируют на тепло человека. Но также срабатывают на тепло животных и нагретые батареи. Они требуют тщательной настройки и установки в место, где не действуют отопительные системы.
Электронные и механические
К электронным относят приборы с различными датчиками: движения, освещения. Также электронные функционируют от пульта дистанционного управления, с телефона или планшета по Wi-Fi или радиосигналу.
Радиус действия пульта определяется от общей планировки помещения, индивидуальных особенностей комнаты и типа материалов, на которых устанавливаются рабочие составляющие. Недостаток приборов с пультом – периодически нужно заменять батарейку. Область действия составляет 25 метров.
Чувствительность
Основной сканирующий элемент устройства — пироприемник, имеет сдвоенную структуру, и поэтому в плоскости излучения происходит парное расщепление каждого луча.
Исходя из особенностей строения различных моделей инфракрасных датчиков движения, зоны чувствительности различных моделей могут иметь разную конфигурацию. Это могут быть точечные лучи, направленные в небольшой угловой сегмент, формирующие отдаленную точку детекции.
Несколько таких лучей расположенных, горизонтальной или вертикальной плоскости формируют «вертикальный барьер» или «сканирующую поверхность», она может быть горизонтальной или иметь наклон.
Одиночный широкий луч, испускаемый в горизонтальной, или вертикальной плоскости формирует «сканирующий занавес».
Кроме того, интенсивность генерируемого излучения влияет на протяженность сканируемой зоны срабатывания. Обзорный сектор может составлять от 300 до 1800 для настенных детекторов и круговой – 3600 для потолочных моделей. Так же возможна регуляция количества лучей, и угла их наклона, до 900.
Такое разнообразие обусловлено требованиями к эксплуатации в различных условиях и высоком уровне эффективности, который должен обеспечивать равномерную чувствительность детектора по всему охраняемому объему срабатывания.
Выбор по цене и производителю
Подобрать подходящий прибор можно по следующим критериям:
- по источнику питания – выключатель от сети 220 В или от аккумулятора;
- по технологии обнаружения движения – инфракрасный, акустический, микроволновый, ультразвуковой, комбинированный;
- по углу обзора – диапазон измерения от 90 градусов до 36 градусов;
Приборы с большим углом обзора стоят дороже.
- радиус действия – от 5 до 20 метров;
- мощность выключателя – зависит от того, сколько светильников будет подключаться к нему;
- по способу крепления;
- по наличию дополнительных функций.
Важно уделить внимание и выбору производителя. Не рекомендуется покупать китайские отвары от неизвестных фирм. Такие выключатели могут не выполнять своих обязанностей и прослужить меньший срок
К лучшим производителям относят изделия фирм Simon, PROxima, Legrand, Camelion, Schneider Electric
Такие выключатели могут не выполнять своих обязанностей и прослужить меньший срок. К лучшим производителям относят изделия фирм Simon, PROxima, Legrand, Camelion, Schneider Electric.
Цены на выключатели начинаются от 400 рублей. Стоимость возрастает, если брать прибор известной фирмы, покупать изделия с дополнительными функциями или изготавливать устройство на заказ.
Для домашнего использования не требуется сверхдорогая модель. Можно приобрести PROxima MS-2000 EKF с ИК датчиком, который обойдется в 450 рублей. Также удачным вариантом для загородного дома или коттеджа будет Camelion LX-16C/BI, выполненный в прочном пластике и выдерживающий температуры от -20 градусов до +40 градусов.
Преимущество применения для дома
Автоматический выключатель света состоит из двух компонентов. Это приемник сигнала и передатчик. В качестве приемника используется радиоуправляемое реле, которое получает команду и замыкает цепь. Передатчик реагирует на действие и подает сигнал.
Инфракрасные выключатели имеют ряд преимуществ. К ним относятся:
- простота монтажа;
- контроль сразу всех осветительных приборов;
- экономия расхода электроэнергии;
- широкий радиус приема сигнала в зависимости от модели;
- дополнительная безопасность помещения (эффект присутствия в доме);
- комфорт включения и выключения света;
- электрическая безопасность, так как устройство слаботочное;
- дистанционное регулирование яркости света.
Главный недостаток таких приборов – высокая цена перед традиционными аналогами. Но с развитием технологии отмечается тенденция к понижению стоимости. Также проблемой является ограничение радиуса действия и невозможность сигнала проникать через препятствия.
3 Особенности подключения
При монтаже уличных датчиков движения нужно учитывать несколько основных правил их установки, иначе устройства могут перестать исполнять свою функцию:
- 1. Нельзя устанавливать охранные датчики периметра рядом с оборудованием, которое излучает электромагнитное излучение. Оно может оказывать влияние на работу приборов.
- 2. Устанавливая детекторы, не следует выбирать места, где на них будут попадать прямые лучи солнца. Исключением можно назвать те датчики, которые специально приспособлены для работы на улице и оснащены козырьком.
- 3. Все несущие конструкции и кронштейны должны быть установлены прочно и не вибрировать в процессе эксплуатации.
- 4. Запрещено монтировать датчики рядом с системами обогрева, кондиционирования и вентиляции. Тёплый воздух может вызывать ложные срабатывания и вносить помехи в работу системы. Особенно это касается инфракрасных устройств.
При установке любых типов детекторов нужно обращать внимание на рекомендованную схему подключения. Чаще всего она идёт в комплекте с прибором
Важные параметры — мощность нагрузки, её тип (активная или индуктивная) и напряжение, необходимое для питания. Если нагрузка в сети выше нужной, то лучше включить в цепь промежуточный электромагнитный пускатель или реле.
Общие рекомендации
Инфракрасный выключатель после покупки нужно отрегулировать. Для этого требуется сделать следующее:
- отрегулировать чувствительность сенсора;
- установить время работы во включенном состоянии;
- если прибор оснащен микрофоном, его также следует отрегулировать.
Многие выключатели оснащаются светодиодным индикатором, который меняет частоту мигания при срабатывании. Это свойство можно использовать при настройке датчика.
Инфракрасный выключатель – это устройство, призванное облегчить и сделать более комфортной жизнь пользователя. Прибор оснащен ИК датчиком, который реагирует на тепло человека. Когда в радиусе видимости сенсора начинается действие, включается светильник. Также выключатель может работать от пульта дистанционного управления.
Схемы подключения разных сенсорных выключателей
Подключить устройство управления в разрыв сети освещения или подачи тока потребителям достаточно просто, это практически ничем не отличается от монтажа обычного выключателя.
Обычно на задней стороне выключателя находятся 4 контакта, каждый из которых помечен, в зависимости от приходящих и отходящих проводников подключения. Признанным стандартом для многих производителей идет размещение слева на право – ноль(N), выводной потребителю (L1-load), вводной фазы (L1-in) и терминал сопряжения (Com). Последний зачастую соединяют перемычкой с питающим проводом.
В случае объединения нескольких выключателей в одном корпусе соответственно добавляются выводные контуры L2-load, L3-load и так далее, в зависимости от количества коммутируемых линий. Существуют также выключатели без подачи отдельного ноль на схему, с использованием электрической развязки общего провода через клиентское устройство.
Сенсорный выключатель без нулевого провода
Для схемы «Индикатор ИК-излучения»
Индикатор инфракрасного (ИК) излучения, или IR-индикатор, служит для определения работоспособности ИК-из-лучателей, а также будет полезен при ремонте пультов менеджмента (ПУ) бытовой техники, датчиков наличия/прохождения бумаги в копировальных аппаратах, факсах и т.п. Свечение таких излучателей глаза человека не воспринимают, и описываемый индикатор дает вероятность проверить их работу. Схема прибора показана на рис.1. При облучении фототранзистора VT1, служащего датчиком ИК-излучения, он открывается, и положительный потенциал поступает на усилитель тока на транзисторах VT2-VT4, нагрузкой которого является светодиод HL1. Свечение последнего и свидетельствует об исправности проверяемого устройства. При проверке ПУ телевизоров светодиод индикатора мигает с частотой следования импульсов менеджмента, а при проверке датчиков наличия бумаги копиров/факсов светится постоянно. к157уд2 усилитель мощности Индикатор питается от выносного сетевого адаптера с выходным напряжением 5 В. Для увеличения мобильности прибора в качестве элементов питания можно использовать батарейки или, например, дисковые аккумуляторы, дополнив схему выключателем питания. Эксперимент показал, что индикатор полностью удовлетворительно работает при питании от источника напряжением 3 В, при подборе необходимой чувствительности резистором R1 и уменьшении номинала резистора R4 до 100 Ом.Детали. В качестве датчика ИК-излучения использован фототранзистор оптопары от неисправной компьютерной «мыши». Его надо аккуратно выпаять и проверить исправность (при необходимости нужно определить полярность подключения) тестером, освещая лампой накаливания. Транзисторы любые из серий КТ315, КТ3102. Светодиод типа АП307 с любым буквенным индексом. Конденсатор типа К50-16, а резисторы типа МЛТ-0,125.Наладка индикатора содержится в установке его… Смотреть описание схемы …
Вывод
Инфракрасный порт, несмотря на простоту использования и невысокую стоимость компонентов приемопередатчика, имеет серьезный недостаток: он требует, чтобы передатчик и приемник были видны (невозможно передать информацию, например, через стену). Это одна из причин отказа от инфракрасной схемы передачи данных IrDA. На смену ему пришли технологии, использующие радиоволны (включая Bluetooth и Wi-Fi).
Тем не менее, когда нет препятствий, инфракрасный порт по-прежнему имеет множество применений, так что знайте это! Более того, одно из его преимуществ — способность отскакивать от стен. Благодаря этому свойству, инфракрасный порт можно использовать, например, для построения датчика препятствий.