Формирователи, одновибраторы и мультивибраторы на интегральных микросхемах

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Ждущий мультивибратор — одновибратор — формирователь импульсов.

Схемы формирователей импульсов на цифровых КМОП микросхемах, онлайн расчёт времязадающих цепей и длительности выходных импульсов. — Почему ждущий? — Почему, почему? Потому что не спит ни днём, ни ночью — он на дежурстве, он ждёт! И ожидает он не трамвая на остановке, а внешнего сигнала запуска для формирования одиночного выходного импульса фиксированной длительности, после чего возвращается в первоначальное состояние самопроизвольно, без каких-либо воздействий и утомительных уговоров. — А почему одновибратор? — Ну, так как, почему? Выдержан, характер нордический, в генерацию, подобно мультивибратору, не впадает, имеет одно устойчивое состояние. Говорили ж Вам — он на дежурстве, он ждёт! — «Говорили ж бабы Вам, пиво с водкой, не для дам!». Второе-то состояние – неустойчивое! — А тут уж, мил-человек, ничего не попишешь, в конце концов, он — одновибратор. У каждого свои недостатки.

Опыты с микросхемой К155ЛА3

На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.

После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.

Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.

Опыт первый (рис.1):
Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)

Вывод первый
: Если на одном из входов лог.0, а на другом лог.1, то на выходе К155ЛА3 обязательно будет лог.1

Опыт второй (рис.2):
Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.

Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.

Вывод второй:
Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1

Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.

Опыт третий (рис.3):
Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.

У каждого настоящего радиолюбителя имеется микросхема К155ЛА3. Но
обычно их считают сильно устаревшими и не могут найти им серьезного использования, так как во многих
радиолюбительских сайтах и журналах обычно описаны только схемы мигалок, игрушек. В рамках этой статьи постараемся расширить радиолюбительский кругозор в рамках применения схем с использованием микросхемы К155ЛА3.

Эту схему можно использовать для зарядки мобильного телефона от прикуривателя бортовой сети автомобиля.

На вход радиолюбительской конструкции можно подавать до 23 Вольт. Вместо устаревшего транзистора П213 можно использовать более современный аналог КТ814.

Вместо диодов Д9 можно применить д18, д10. Тумблеры SA1 и SA2 используются для проверки транзисторов с прямой и обратной проводимостью.

Для того чтобы исключить перегрев фар можно установить реле времени, которое будет выключать стоп-сигналы если они горят более 40-60 секунд, время можно изменить подбором конденсатора и резистора. При отпускании и следующем нажатии педали фонари снова включаются, так что на
безопасность вождения это никак не влияет

Для повышения КПД преобразователя напряжения и предотвращения сильного перегрева, в выходном
каскаде схемы инвертора применены полевые транзисторы с низким сопротивлением

Сирена используется для подачи мощного и сильного звукового сигнала для привлечения внимания людей и эффективно защищает ваш оставленный и пристегнутый на короткое время байк.

Если вы хозяин дачи, виноградника или домика в деревне, то вы знаете, какой огромный ущерб могут создать мыши, крысы и другие грызуны, и какой затратной неэффективной, а иногда и опасной является борьба с
грызунами стандартными способами

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Кроме микросхемы в имеется яркий светодиод и несколько компонентов обвязки. После сборки устройство начинает работать сразу. Регулировка не требуется, кроме подстройки длительности вспышек.

Напомним, что конденсатор C1 номиналом 470 микрофарад впаиваем в схему строго с соблюдением полярности.

С помощью номинала сопротивления резистора R1 можно изменять длительность вспышки светодиода.

Одновибратор на логических элементах К155ЛА3

Одновибратором именуют генератор, вырабатывающий одиночные электрические импульсы. Алгоритм работы одновибратора таков: при поступлении на вход одновибратора электрического сигнала, схема выдает на выходе короткий импульс, продолжительность которого определяется номиналами RC цепи.

После окончания формирования выходного импульса, одновибратор вновь возвращается в свое первоначальное состояние, и процесс повторяется при поступлении нового сигнала на его входе. Поэтому данный одновибратор еще именуют ждущим мультивибратором.

На практике применяется множество разновидностей одновибраторов, таких как одновибратор на транзисторах, операционных усилителях и одновибратор на логических элементах.

Как это работает

Блок-схема генератора представлена на Рисунке 1. Генератор собран по классической схеме с использованием одного из элементов микросхемы CD4093BE, представляющей собой сборку из четырех двухвходовых элементов «И-НЕ». Отличие данной микросхемы от аналогичной по логическому функционалу микросхемы CD4011BE заключается в том, что каждый вход является триггером Шмитта, позволяющим работать с медленно изменяющимся входным сигналом.

Рисунок 1. Блок-схема генератора с оптической ОС.

Оптическая обратная связь осуществляется с выхода генератора (точка «b») через светодиод VD2 и цифровой фотоприемник DD2, выполненный на микросхеме ТSOP4838, выход которого подсоединен к свободному входу элемента DD1. При разорванной оптической связи, например, при наличии непрозрачного препятствия между VD2 и DD2, в точке «с» присутствует логическая «1», что позволяет генератору на DD1 формировать импульсную последовательность, частота которой определяется резистором R2, а длительность положительного импульса – резистором R1.

Это состояние иллюстрируется Рисунком 2.1.

Рисунок 2. Оптическая обратная связь: 2.1 – разомкнута, 2.2 – замкнута.

При возникновении оптической обратной связи напряжение в точке «с» уменьшается до нуля, что принудительно поддерживает высокий потенциал в точке «b». Такое состояние продолжается до тех пор, пока внутренние временные ограничения микросхемы DD2 вновь не установят на выходе логическую единицу.

Конденсатор С1 за время принудительной остановки генератора заряжается до напряжения питания и разряжается до нижнего порога триггера Шмитта существенно дольше, что объективно снижает частоту генератора. Это отражено на Рисунке 2.2.

В граничных условиях при недостаточной освещенности фотоприемника TSOP сигнал на его выходе носит случайный характер по частоте возникновения, длительности импульса и его задержке относительно фронта возбуждающего светового импульса. При приеме цифровых сигналов это приводит к ошибке принятого кода; при приеме управляющего импульса в устройствах охранной автоматики – к ошибкам срабатывания сигнализации. Эти недостатки присутствуют и в рассматриваемом генераторе. На Рисунке 3.1 представлен случай недостаточной освещенности фотоприёмника DD2. Выходной импульс в точке «с» короче возбуждающего импульса и сдвинут относительно его фронта на случайную величину.

Рисунок 3. Выходной сигнал фотоприемника DD2: 3.1 – при недостаточной освещенности,
3.2 – при достаточной освещенности.

На Рисунке 3.2 показана осциллограмма стационарного процесса, когда освещенность фотоприемника DD2 достаточна и фронт выходного импульса сдвинут относительно фронта возбуждающего импульса на фиксированную величину, равную примерно 380 мкс. Этот факт дает возможность построения импульсного дискриминатора для фиксации факта корректной работы фотоприемника. Справедливости ради нужно отметить, что для случая, показанного на Рисунке 3.2, в эти 380 мкс входит еще время включения генератора несущей частоты, составляющее в самом худшем случае половину периода несущей частоты 38 кГц, то есть примерно 13 мкс.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже



Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна


В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением


Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Одновибратор на логических элементах К155ЛА3

Одновибратором именуют генератор, вырабатывающий одиночные электрические импульсы. Алгоритм работы одновибратора таков: при поступлении на вход одновибратора электрического сигнала, схема выдает на выходе короткий импульс, продолжительность которого определяется номиналами RC цепи.

После окончания формирования выходного импульса, одновибратор вновь возвращается в свое первоначальное состояние, и процесс повторяется при поступлении нового сигнала на его входе. Поэтому данный одновибратор еще именуют ждущим мультивибратором.

На практике применяется множество разновидностей одновибраторов, таких как одновибратор на транзисторах, операционных усилителях и одновибратор на логических элементах.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Принцип построения импульсных генераторов на ОУ

В предыдущих статьях я рассказывал об импульсных генераторах с различной формой импульсов, выполненных на транзисторах. Для простых устройств их, возможно, применять, но для создания сложных устройств с регулировкой различных параметров их схемы оказываются неоправданно трудоёмкими в настройке и разработке. Поэтому для упрощения схемотехнической реализации применяют генераторы импульсов в основе, которых лежат операционные усилители.

В общем случае для получения импульсов различной формы требуется замкнутая система, которая состоит из трёх основных частей: интегратора, компаратора и логической схемы.



Блок-схема генератора колебаний различной формы.

Хотя схема состоит из трех частей, но довольно часто в простых генераторах применяют один-два операционных усилителя. Для повышения гибкости и универсальности схем генераторов можно добавлять дополнительные ОУ.

Первой рассматриваемым генератором будет мультивибратор, то есть генератор прямоугольных импульсов.

Реле времени

Реле времени (рис. описано в книге П. Величкова и В. Христова (Болгария). Кратковременное нажатие на кнопку SA1 разряжает времязадающий конденсатор С1 и устройство начинает «отсчет времени».

Рис. 8. Принципиальная схема реле времени на транзисторах.

В процессе заряда конденсатора напряжение на его обкладках плавно увеличивается. В итоге, через некоторое время реле сработает, и включится исполнительное устройство.

Скорость заряда конденсатора, а, следовательно, и время выдержки (время экспозиции) можно изменять потенциометром R1. Реле обеспечивает максимальное время экспозиции до 10 сек при указанных на схеме параметрах элементов. Это время может быть увеличено за счет увеличения емкости конденсатора С1, либо сопротивления потенциометра R1.

Стоит отметить, что для столь простых схем «аналоговых» таймеров стабильность временного интервала невелика. Кроме того, нельзя до бесконечности наращивать емкость времязадаю-щего конденсатора, поскольку заметно возрастает его ток утечки.

Такой конденсатор неприемлем в схемах «аналоговых» таймеров. Существенно увеличить время экспозиции за счет сопротивления потенциометра R1 также нельзя, поскольку входное сопротивление последующих каскадов, если только они не выполнены на полевых транзисторах, невелико.

Аналоговые таймеры (реле времени) широко используют при фотопечати, для задания времени выполнения каких-либо процедур. Эти устройства используются, например, для получения воды, ионизированной серебром.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Подадим питание и замерим стрелочным вольтметром напряжение на выводах логических элементов DD1.1 и DD1.2 микросхемы К155ЛА3. На выходе логического элемента DD1.1 микросхемы К155ЛА3 должен быть логический ноль (не более 0,4 вольта) и единица (более 2,4 вольта) на его входе 2. Так же на выходе 6 логического элемента DD1.2 будет единица и соответственно единица на выводе 1 на DD1.1.

Одновременно с этим процессом загорится и светодиод, подсказывая нам, что на выходе одновибратора появился одиночный импульс высокого уровня. Если параллельно конденсатору С1 подключить конденсатор такой же емкости, то мы заметим, что продолжительность импульса возросла вдвое. Так же изменяя сопротивление резистора R1 можно добиться изменения длительности импульса.

Подведем итог: Чем выше емкость конденсатора C1 и сопротивление R1, тем продолжительнее выходной импульс вырабатываемый одновибратором на К155ЛА3.

В данной схеме одновибратора сопротивление R1 и емкость Cl представляют собой времязадающую RC цепь. При малых значениях C1 и R1 длительность импульса будет настолько короткой, что визуально обнаружить его с помощью вольтметра или светодиода не реально. В этом случае наличие импульса можно зафиксировать с помощью осциллографа или логического пробника.

В ждущем состоянии вывод 2 микросхемы К155ЛА3 никуда не подсоединен, поскольку контакты SA1 еще незамкнуты. По сути, на входе находится единица. Зачастую вход в таком случае соединяют с плюсом питания через сопротивление 1 кОм.

Из-за подключенного сопротивления R1, на входе логического элемента DD1.2 находится лог. 0, а на его выходе лог. 1. Поскольку на обоих выводах конденсатора лог. 0, он полностью разряжен.

В момент нажатия SA1, на вход 2 логического элемента DD1.1 поступает электрический сигнал низкого уровня. Поэтому на выводе 3 логического элемента DD1.1 единица. Положительный фронт через C1 подается на вход DD1.2. Соответственно с выхода его логический 0 поступит на вход DD1.1 и он будет присутствовать там даже после отпускания кнопки.

Одновременно через резистор происходит заряд конденсатора. И по окончании заряда напряжение на резисторе упадет и это переведет выход элемента DD1.2 в лог. 1. Одновибратор вернется в исходное состояние — в ждущий режим.

Следует заметить, то входной сигнал (нажатие кнопки) должен быть меньше по продолжительности, чем выходной иначе выходных импульсов не будет.

Источник

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: