Резистивные датчики температуры
Температурно-резистивные датчики (термопреобразователи сопротивления) изготовлены из редких металлов, например платины, чье электрическое сопротивление изменяется от соответственно изменению температуры.
Резистивный детектор температуры имеет положительный температурный коэффициент и в отличие от термисторов, обеспечивает высокую точность измерения температуры. Однако, у них слабая чувствительность. Pt100 являются наиболее широко доступным датчиком со стандартным значение сопротивления 100 Ом при 0°C. Основным недостатком является высокая стоимость.
Преимущества таких датчиков
- Широкий диапазон температур от -200 до 650°C
- Обеспечивают высокий выход по току падения
- Более линейны по сравнению с термопарами и термосопротивлениями
Высокотемпературный градусник
Для тех случаев, когда требуется измерение температуры свыше пределов «выживания» терморезистора, используется термопара. Ее функциональность сохраняется и при 600 градусах Цельсия. Подобный определитель нагрева среды может быть полезен не только на производстве, но и дома. К примеру, определять температуру работы духовки или текущую на жале паяльника.
Схема
Термопара генерирует микроскопический ток, малым напряжением и силой. Для преобразования полученных характеристик, в понятный микроконтроллеру вид, используется шилд Ардуино с микросхемой MAX6675. Вывод показаний осуществляется на числовой индикатор ТМ1637.
Скетч
Скетч, как и в предыдущем случае, требует библиотеки Groove 4Digital Display для управления индикатором. Преобразователь MAX6675 контролируется процедурами из одноименной коллекции, расположенной по адресу:
Скетч можно скачать здесь: https://cloud.mail.ru/public/Y8Yz/jYWsjgY29
Полупроводниковые датчики с цифровым выходом
Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики можно встретить в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Также использование стандартных интерфейсов позволяет интегрировать датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей, что обусловило огромную популярность применения этих элементов в любительской практике и мелкосерийном производстве.
Сферы использования
Возможная область применения индукционных датчиков настолько велика, что позволяет использовать их не только в быту и автомобилестроении, но и в промышленности с робототехникой, а также медицине.
Медицинские аппараты
Индуктивные датчики широко используются при производстве медицинского оборудования, поскольку магнитные свойства устройства позволяют регистрировать легочную вентиляцию, параметры вибрации, а также снимать баллистокардиограммы.
Бытовая техника
В бытовом плане датчики могут выступать в качестве приспособления контроля водоснабжения, уровня освещения и положения двери (закрыта или открыта), поэтому используются при производстве, к примеру, стиральных машин и другой бытовой техники. Кроме того, устройства применяются в процессе создания элементов «умного дома».
Автомобильная промышленность
Используется индукционный датчик и в автостроении, выступая в роли контроллера, определяющего положение коленчатого вала. При приближении металлического объекта, в данном случае, зуба шестерни, к устройству, генерируемое встроенным постоянным магнитом магнитное поле увеличивается, что приводит к наведению в катушке переменного напряжения.
Внимание! Некоторые производители для повышения эффективности стараются изменить конструкцию индукционного датчика, к примеру, используя внешние магниты для его активации
Робототехническое оборудование
В случае с робототехникой, индуктивным датчикам нашли применение в производстве беспилотных аппаратов и промышленных роботов для повышения их чувствительности к препятствиям и способности распознавать объекты, а также устройствах, для которых важна самобалансировка.
Промышленная техника регулирования и измерения
Широко используются в работе систем транспортеров, упаковочных аппаратов и сборочных линий, а еще в составе всех видов станкового оборудования и запорной арматуры. Также индуктивные датчики помогают контролировать мелкие и крупные элементы промышленной техники (зубцы шестеренок, стальные флажки, штампы), объекты производства (металлические изделия, листы металла, крышки) и т.п. Кроме того, при их подключении к импульсным счетчикам можно в результате получить элементарное, но крайне эффективное считывающее устройство.
Термистор
Термистор — это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры.
За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры.
Преимущества термисторов
- Большая скорость реагирования на изменения температуры, точность.
- Низкая стоимость.
- Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
- Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.
Зависимости сопротивления от температуры
Зависимость сопротивления от температуры выражается следующим уравнением:
где A, B, C — это константы (предоставляются условиями расчёта), R — сопротивление в Омах, T — температура в Кельвинах. Вы можете легко рассчитать изменение температуры от изменения сопротивления или наоборот.
Как использовать термистор?
Термисторы оцениваются по их резистивному значению при комнатной температуре (25°C). Термистор-это пассивное резистивное устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.
Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.
Следовательно, его выходное напряжение может быть рассчитано следующим образом:
При 25°C, RNTC = 2200 Ом;
При 80°C, RNTC = 50 Ом;
Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры
Выходное напряжение на резисторе и температура линейно связаны.
Возможные следующие шаги
Всё в данной статье показывает довольно простой способ измерения температуры с помощью дешевого термистора. Есть еще пара способов улучшить схему:
- добавить небольшой конденсатор параллельно выходу делителя. Это стабилизирует напряжение и может даже устранить необходимость усреднения большого количества выборок (как было сделано в коде) – или, по крайней мере, мы сможете усреднять меньшее количество выборок;
- использовать прецизионные резисторы (допуск меньше 1%), чтобы получить более предсказуемые измерения. Если вам критична точность измерений, имейте в виду, что самонагревание термистора может повлиять на измерения; в данной статье самонагрев не компенсируется.
Конечно, термисторы – это только один из датчиков, используемых для измерения температуры. Другой популярный выбор – это микросхемы датчиков (пример работы с одной из них описан здесь). В этом случае вам не придется иметь дело с линеаризацией и сложными уравнениями. Два других варианта – это термопара и инфракрасный тип датчика; последний может измерять температуру без физического контакта, но он уже не так дешев.
Надеюсь, статья оказалась полезной. Оставляйте комментарии!
Схема термометра для процессора, видеокарты и БП ПК
AVR Atmega 8 в миниатюрном корпусе TQFP32 идеально подходит для такого типа проектов, в качестве датчиков температуры были выбраны DS18B20, работающие по шине 1-W3ire.
Для управления анодами дисплея использовал транзисторы PNP BC857 (IcMAX = 100 мА, IcPeak = 200 мА) в корпусе SOT23 (каждый сегмент дисплея имеет фиксированный ток при Iseg = 20 мА: Rcathode = (VCC — VGreenLed) / Iseg = (5V — 1,8V) ) / 20 мА = 160R = ~ 150R (т.е. Iseg = ~ 21 мА).
Транзисторы должны работать как ключи, поэтому в соответствии с диапазоном усиления (100…800), выбирая наихудшее усиление и запас прочности x3:
Ib = 3 х Ic / 100 = 3 х 147 мА / 100 = 4,4 мА
Rb = (Vcc — Vbe ) / Ib = (5V — 0.7V) / 4,4 мА = 970R = 1k
Одной из дилемм был способ подключения термометров к компьютеру.
1) каждый может быть подключен к отдельной линии передачи данных.
— больше используемых контактов
— термометры можно подключать к любым разъемам, потому что разъем 1 всегда будет связан с дисплеем 1, а 2 с дисплеем 2 и т. д.
2) все они могут быть подключены к общей линии передачи данных.
+ сохранение пина
— необходимость связать уникальный серийный номер с данным датчиком (то есть числа, вшитые в код микропроцессора или какой-либо другой метод настройки).
Выбор пал на метод 1. Решил проблему с USB-разъемом, просто согнув его контакты по вертикали и припаяв все это тоже к металлической части корпуса, таким образом обеспечивая их постоянную защиту.
К сожалению, с самого начала все пошло не так, как должно:
В результате такой транзистор высвобождает напряжение питания на линии MOSI / CD, и, несмотря на последовательно включенный резистор 160R, программатор не может управлять этой линией. Конечно, все специальные линии (MOSI, MISO, SCK) могут использоваться во время работы микроконтроллера любым способом, как и любой из его выводов. Но следует помнить, что к этим линиям не подключается никакой вывод от другой внешней схемы, потому что тогда при попытке программирования микроконтроллер не сможет управлять этими линиями.
Решением было заменить вывод, управляющий линией CD, на другой (отсюда и красный кабель, видимый на плате).
Снова не получилось общаться с термометрами (несмотря на то, что была собственная написанная и протестированная библиотека). Оказалось, что забыл про внешние резисторы, подтягивающие эту линию к питанию (4,7 кОм), а встроенные в Atmega резисторы (30-50 кОм) оказались слишком большими. Пришлось добавить резисторы SMD на плату.
Термометр в среднем гнезде не заработал — причиной было короткое замыкание на землю по этой линии, возникшее во время пайки.
Дисплей мигал. Для поддержки протокола 1-Wire требуется соблюдение временных зависимостей во время передачи, а это означает, что прерывания должны быть отключены в это время, что может продлить выполнение критического кода, нарушая передачу. Однако отключение прерываний, которые, в свою очередь, выполняют сегменты кода 7 обработки дисплея, вызывает их заметное мигание. Здесь решение заключалось в отключении прерывания не на все время обработки показаний температуры, а только в критических ситуациях (на время передачи / чтения каждого отдельного бита в протоколе 1-Wire).
Терморезистор
Ключевым компонентом нашей схемы является терморезистор, который используется для определения температуры. Термистор представляет собой резистор, сопротивление которого изменяется в зависимости от температуры. Существует два типа подобных термисторов: NTC (Negative Temperature Co-efficient — с отрицательным температурным коэффициентом) и PTC (Positive Temperature Co-efficient — с положительным температурным коэффициентом). Мы в нашем проекте будем использовать терморезистор NTC типа – его сопротивление уменьшается с повышением температуры. На следующих рисунках приведены график зависимости сопротивления подобного терморезистора от температуры и его типовой внешний вид.
Расчет температуры с помощью терморезистора
Схема используемого нами делителя напряжения представлена на следующем рисунке.
Напряжение на терморезисторе в этой схеме можно определить из известного напряжения:
Vout=(Vin*Rt)/(R+Rt).
Из этой формулы можно выразить значение сопротивления терморезистора Rt (R – известное сопротивление 10 кОм):
Rt=R(Vin/Vout)-1.
Значение Vout мы затем будем определять в коде программы с помощью считывания значения на выходе АЦП на контакте A0 платы Arduino.
Математически, сопротивление терморезистора можно вычислить с помощью известного уравнения Стейнхарта-Харта (Stein-Hart equation).
T = 1/(A + B*ln(Rt) + C*ln(Rt)3).
В этой формуле A, B и C — константы, Rt – сопротивление терморезистора, ln — натуральный логарифм.
Мы для проекта использовали терморезистор со следующими константами: A = 1.009249522×10−3, B = 2.378405444×10−4, C = 2.019202697×10−7. Эти константы можно определить с помощью данного калькулятора, введя в нем значения сопротивления терморезистора при трех значениях температуры или вы их можете непосредственно узнать из даташита на ваш терморезистор.
Таким образом, для определения значения температуры нам будет нужно только значение сопротивления терморезистора – после его определения мы просто подставляем его значение в уравнение Стейнхарта-Харта и с его помощью рассчитываем значением температуры в кельвинах. Алгоритм определения температуры в нашем проекте представлен на следующем рисунке.
А что там свежего в группе ВК СамЭлектрик.ру?
Подписывайся, и читай статью дальше:
Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.
Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.
Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.
Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.
Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.
Урок 12. Измерение температуры при помощи AVR. Простой термометр на AVR.
Характеристики датчика: диапазон измерения от -55 до +125°С. Точность измерения ±0,5°С гарантируется в диапазоне от -10 до +85°С. Возможность измерения с разрешением 9, 10, 11 и 12 бит, т.е. с шагом 0,5; 0,25; 0,125; 0,0625°С. Для обмена информацией с AVR микроконтроллером используется 1-Wire протокол. Каждый датчик имеет свой уникальный адрес, поэтому имеется возможность посадить на шину сразу несколько датчиков.
Для сборки схемы понадобится жк дисплей, датчик и резистор на 4,7кОм. Теперь перейдем непосредственно к прошивке.
#include #include // 1 Wire Bus functions #asm .equ __w1_port=0x18 ;PORTB .equ __w1_bit=2 #endasm #include #include // Alphanumeric LCD Module functions #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #include char lcd_buf; void main(void) ; >
Теперь обо всем по порядку:
#asm .equ __w1_port=0x18 ;PORTB .equ __w1_bit=2 #endasm
Данный код означает, что датчик подключен к порту В, PB2 ножке
Используется протокол 1wire, тип датчика ds18b20
float temper; w1_init(); ds18b20_init(0,-20,50,DS18B20_12BIT_RES);
Переменная temper (с плавающей точкой) используется для хранения температуры, w1_init(); — ищем датчик, ds18b20_init(0,-20,50,DS18B20_12BIT_RES); — настройка датчика: 0-номер датчика, -20 -нижний предел измерения, 50 — верхний предел измерения, DS18B20_12BIT_RES используется 12 битный режим(с шагом 0,0625°С). В принципе настройку можно не производить, по умолчанию выставлен 12 битный режим. Показано лишь для того, чтобы вы могли самостоятельно изменить режим измерения, если это понадобится.
temper=ds18b20_temperature(0); sprintf(lcd_buf,»t=%.1fxdfC»,temper); lcd_clear(); lcd_puts(lcd_buf); delay_ms(1500);
temper=ds18b20_temperature(0); — читаем значение температуры с датчика sprintf(lcd_buf,»t=%.1fxdfC»,temper); преобразовываем к понятному для lcd виду %.1f — вывод числа с плавающей точкой 1 знак после запятой, не забываем в свойствах проекта указать (s)printf features float. xdf — вывод на экран значка градуса.
В результате должно получиться нечто похожее
Отрицательной температуры поблизости не было :D, поэтому попробовал остудить бутылочкой соуса из холодильника, результат что то не сильно впечатлил.
Зато от нагрева рукой, температура довольно быстро повысилась.
Класс допуска
Приведенные ниже данные соответствуют международным и российским стандартам. Допустимо использование уникальных температурных диапазонов, утвержденных в ТУ определенного предприятия производителя.
Допуски
Классификация по ГОСТ | Допустимое отклонение, °C | Нормированный температурный диапазон для разных видов ТС (минимум/ максимум в °C) | ||
Платиновый проволочный (пленочный) | Медный | Никелевый | ||
АА | ±(0,1 + 0,0017) | -50/+250 (-50/+150) | — | — |
А | ±(0,15 + 0,002) | -100/+450(-30/+300) | -50/+120 | — |
В | ±(0,3 + 0,005) | -196/+660 (-50/+500) | -50/+200 | — |
С | ±(0,6 + 0,01) | -196/+660 (-50/+600) | -180/+200 | -60/+180 |
О транзисторе
Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.
Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.
Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.
Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.
На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.
Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.
Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.
Современный многофункциональный мультиметр.
Проверка работоспособности транзистора
Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.
Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.
Теперь произведём обратное измерение коллекторного и эмиттерного перехода.
Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.
Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.
При этом во многих случаях можно обойтись и без выпаивания его из платы.
Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.
Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.
Применение
Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.
Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами
При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения