Заземление электроустановок до 1000в по пуэ 7

Электросфера Земли

Электросфера Земли простирается от уровня моря на высоту около 60 км. В верхних слоях, там где много свободных ионов и эта часть сферы называется ионосферой, проводимость максимальная, так как есть свободные носители зарядов. Потенциал в ионосфере можно сказать выровнен, так как эта сфера по сути считается проводником электрического тока, в ней существуют токи в газах и ток переноса. Источником свободных ионов является радиоактивность Солнца. Поток заряженных частиц, идущих от Солнца и из космоса «выбивает» электроны из молекул газа, что приводит к ионизации. Чем выше от поверхности моря, тем меньше проводимость атмосферы. У поверхности моря электропроводность воздуха составляет порядка 10-14 Сименс/м (См/м), но она быстро растет по мере увеличения высоты, и на высоте 35 км составляет уже 10-11 См/м. На такой высоте плотность воздуха составляет всего 1% от той, что у поверхности моря. Дальше, с ростом высоты проводимость меняется неоднородно, потому как оказывает влияние магнитное поле Земли и потоки фотонов от Солнца. Это значит, что проводимость электросферы выше 35 км от уровня моря неоднородна, зависит от времени суток (поток фотонов) и от географического места (магнитное поле Земли).

Для того, чтобы произошел электрический пробой между двумя плоскими параллельными электродами (расстояние между которыми 1 метр), которые находятся на уровне поверхности моря, при сухом воздухе, необходима напряженность поля в размере 3000 кВ/м. Если же эти электроды поднять на высоту 10 км от уровня моря, то потребуется всего лишь 3% от такой напряженности, то есть достаточно 90 кВ/м. Если же электроды сблизить так, что расстояние между ними будет 1 мм, тогда потребуется в 1000 раз меньшее напряжение для пробоя, то есть 3 кВ (уровень моря) и 9 В (на высоте 10 км).

Естественная величина напряженности электрического поля Земли у ее поверхности (уровень моря) составляет порядка 150 В/м, что гораздо меньше значений необходимых для пробоя между электродами даже в промежутке 1 мм (требуется 3 кВ/м).

Особенности подключения ГЗШ в схемах TN-С и TN-С-S

В схемах собранных по этим стандартам заземляющий провод отсутствует или совмещается на отдельных участках проводки с нулевым N-нейтральным, допускается в качестве ГЗШ использовать РЕN шину. В распределительном щите на эту шину заводятся все провода от контура заземления, ЛЭП и заземление от различных групп проводки здания. При этом шина заземления соединяется отдельным проводом с шиной для линий с изолированной нейтралью N.


Таким образом, можно использовать стальной корпус шкафа в качестве главной шины заземления

Подключение ГШЗ в ВРУ расположенных на столбах ЛЭП

Особенность этого варианта подключения заключается в том, что шкафы ВРУ на столбах, имеют собственный заземлитель и очень часто подключаются к дому через кабель на троссовой подвеске.

В этих случаях на ГЗШ заводится провод от заземления столба, заземляющая линия ЛЭП, отвод от металлического троса. Кроме того главные шины ВРУ столба и ВРУ дома соединяются отдельной линией. Трос заземляется с обеих сторон, на шину возле ЛЭП и на шину в ВРУ для дома.

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Какие элементы подлежат заземлению?

К тем частям, которые подлежат не только занулению, но также и заземлению относится следующее:

  • Приводы соответствующих электрических аппаратов.
  • Корпуса определенного рода электрических машин. Последние, кстати говоря, могут быть представлены также и в форме трансформаторов, светильников и так далее.
  • Те обмотки измерительных трансформаторов, которые относятся к числу вторичных.
  • Металлические корпуса передвижных, а также переносных электроприемников.
  • Открывающие части. На последних, в обязательном порядке должны быть установлено электрооборудование, напряжение переменного тока которого равняется более 42В.
  • Опорные конструкции так называемых струн, шинопроводов, коробов тросов и так далее.

В чём разница между заземлением и занулением? Изучение терминов

Заземление в частном доме

Оба этих понятия используются, когда необходимо обеспечить дополнительную защиту от поражения электрическим током.

Кроме того, такие действия помогают предотвратить появление серьёзных повреждений из-за технических проблем.

Заземление осуществляется с единственной важной задачей – обеспечение безопасности людей во время использования приборов, работающих от электричества. Эта проблема становится всё более актуальной с каждым годом, ведь и электропотребление граждан возрастает

Эта проблема становится всё более актуальной с каждым годом, ведь и электропотребление граждан возрастает.

Ситуация усложняется как внутри частных домов, так и в городских квартирах. Возрастает уровень доступности бытовой техники с высокой мощностью. Часто возникают внештатные ситуации. К примеру, можно вспомнить о коротких замыканиях. Возможно предпринять дополнительные защитные меры от поражений электричеством. Ведь земля отличается более низким сопротивлением, чем люди. А электричество всегда идёт по пути, где данный параметр ниже.

Заземление и зануление отличаются друг от друга по следующим признакам:

  • При заземлении обычно для соединения с землёй организуется отдельная линия.
  • При второй ситуации рабочий ноль играет роль проводника. И данный фактор скрывает главную опасность.
  • При занулении защита обеспечивается полностью, если система работает в нормальном режиме. Но контур замыкается, как только связь «рабочего ноля» с землёй нарушается. Из-за этого повышается вероятность того, что прибор выйдет из строя. И возрастаеи опасность того, что человека поразит током, когда он будет контактировать с приспособлением.
  • Более того, зануление не защищает от пожара. Особенно высока опасность при эксплуатации конструкций, основой для которых послужили легковоспламеняемые материалы. Рабочий ноль, таким образом, показывает недостаточную эффективность при организации защиты. И уровень надёжности уступает другим конструкциям.

Часто задаваемые вопросы

Вопрос №1. Что дает соединение на отдельных электроустановках нулевого провода с проводом заземления. Получится глухозаземленная нейтраль, но при обрыве напряжение в любом случае пропадет, защиты не будет?

Если фаза будет целая, на участке до обрыва напряжение не пропадет, при замыкании фазы на корпус на этом интервале электроустановки будут под защитой. Сработают автоматические выключатели.

Вопрос №2. Зачем трос подключать с обеих сторон, одной точки заземления не достаточно?

При обрыве троса и падении кабеля может быть замыкание фазы на трос с любой стороны. Заземление с обеих сторон обеспечит срабатывание защитных автоматов в любом случае.

Вопрос №3. Как поступить если приходящий кабель старый с алюминиевыми жилами и на ВРУ шина тоже алюминиевая?

Оставьте как было, для медных проводов установите медную шину, шины соедините медным и алюминиевым проводом опресованным комбинированной гильзой. (это цилиндр половина медная другая алюминиевая соединяются специальной сваркой).

Вопрос №4. Что делать если места для установки медной шины в шкафу не хватает?

Подключайте провода на алюминиевую шину через комбинированные гильзы.

Вопрос №5. Можно использовать для заземления трубы канализации и водопровода подключенные к центральным системам, ведь они уже находятся в земле?

Нет, на центральной магистрали в любое время могут, проводить реконструкцию, ремонт заземлитель будет нарушен. Трубы на основной магистрали бывают пластиковыми, они не могут выполнять роль заземлителя.

Источник electric-tolk.ru

При организации работы электрооборудования и электрической сети основным вопросом является безопасность системы. В основе такой системы находится главная заземляющая шина. В этой статье мы расскажем о технических особенностях заземления и о практических аспектах его установки.

Молниезащита

Опасность грозовых токов в значительной степени зависит от зоны прямого попадания молнии. При попадании молнии непосредственно в здание (например, в часть линии при наружной прокладке электрокабеля или в кровлю) системы молниезащиты и заземления должны отводить энергию молнии к потенциалу земли. Расчетное значение угрозы – 200 кА.

При попадании молнии в заземленное здание из-за полного сопротивления заземляющего устройства потенциал всей системы может значительно увеличиться, что приводит к разделению токов молнии через саму систему заземления и через сети информационных проводов и силовых электрокабелей к соседним сооружениям, имеющим собственную систему заземления (соседние здания, трансформаторы и т.д.).

При попадании молнии в низковольтную воздушную линию или линию передачи данных значение угрозы составляет до 100 кА. В этом случае разряд может спровоцировать возникновение частичных токов молний в близлежащих зданиях. Особую опасность попадание молнии в электрические провода представляет для электроустановок, находящихся в конце воздушных линий низкого напряжения.

В случае близкого, но непрямого удара молнии значение угрозы составляет всего несколько кА, но при этом возникают высокие магнитные поля, которые приводят к скачкам напряжения в системах проводников. За счет индуктивной или гальванической связи подобные повреждения могут возникать в радиусе до двух километров от точки удара молнии.

Марки и требования

При покупке кабеля для заземления необходимо всесторонне его изучить на возможность применения в доме, квартире или специальном помещении (к примеру, ванной, сауне и т. д).

Заземляющий проводник может быть с одной жилой или многожильным. Здесь нужно ориентироваться на место монтажа и удобство применения.

Приведем несколько примеров:

  1. При соединении корпуса с дверцей шкафа необходимо сохранить подвижность, поэтому лучше использовать многожильное изделие. Если установить одножильный проводник, из-за частых сгибаний он быстро повредится.
  2. Для соединения корпуса электрического мотора, где не нужна подвижность, пригодятся жесткие жилы. Здесь особых требований к гибкости не предъявляется.
  3. При обустройстве заземления в квартире или доме можно использовать любой из типов проводов с учетом риска его повреждения и удобства прокладки.

В зависимости от типа заземляющая жила может быть из алюминия и меди, идти в качестве отдельного изделия или в составе бухты кабеля, быть с изоляцией или без нее.

Сегодня выделяется несколько основных марок проводов.

NYM

Изделие с медной жилой, промежуточной оболочкой зелено-желтого цвета. Отличается удобством монтажа, применяется для напряжения до 660 В. Рабочая частота 50 Гц.

Количество проводников может быть от одного до пяти с сечением от 1,5 до 6 кв. мм. Номинальный ток определяется рабочим сечением проводника.

Температурный режим работы от -50 до +50 градусов Цельсия. Радиус изгиба не более четырех диаметров кабеля.

Плюсы — стойкость к влаге и огню, гибкость и большой выбор вариантов исполнения.

Минусы — высокая цена и боязнь прямых солнечных лучей.

ВВГ

Кабель с поливинилхлоридной изоляцией, наружной ПВХ-оболочкой и без специального защитного слоя (брони). Бывает одно- или многожильным.

В 3-х, 4-х и 5-ти жильных кабелях может предусматриваться заземление и нейтраль.

Разрешено использование в качестве заземляющего проводника при напряжении до 600 В.

Некоторые типы кабеля предусмотрены для работы на 1000-2500 В. температурный режим работы от -50 до +50 градусов Цельсия.

ПВ3

Провод медный с поливинилхлоридной изоляцией. Отличается высокой гибкостью, что позволяет применять его для заземления разных устройств и механизмов (в том числе в быту).

Изделие устойчиво к влиянию влаги и способно работать в температурном режиме от +60 до -70 градусов Цельсия. Следовательно, его можно применять даже в экстремальных условиях — банях, ванных комнатах и на улице.

ПВ3 не боится плесени и не подвержен огню. При воздействии высокой температуры происходит обычное оплавление оболочки.

ПВ6

Надежное изделие, применяемое для прокладки токоведущих частей и заземления

Во время использования важно избегать попадания прямых лучей солнца и высокой температуры

Жилы изделия состоят из меди, бывают монопроволочными или многопроволочными. Рабочее напряжение до 1000 В.

Благодаря применению прозрачного пластика, удобнее контролировать исправность устройства.

Цвета исполнения могут быть различными, поэтому выполнять цветовую маркировку необходимо самостоятельно. Для этого можно использовать подход, который упоминался выше — маркировка с помощью желтой и зеленой изоленты.

ESUY

Медный заземляющий кабель с высокой степенью гибкости. Жила изготовлена из тонких проводов. Сверху предусмотрена оплетка высокой прочности. При изготовлении не применяется кремнийорганическая резина.

Изделие имеет высокую стойкость к морозам, прозрачную оболочку и температурный режим работы от -40 до +70 градусов Цельсия.

Выше рассмотрены наиболее популярные марки проводов/кабелей для заземления, но можно задействовать и иные варианты. Главное, чтобы проводник удовлетворял требованиям гибкости и сечения.

Рекомендации по выбору в зависимости от ситуации

Давайте разберемся, какой провод нужен для проводки в доме. Выбирать надо, учитывая максимальную величину потребляемого при нагрузке тока, которую определяют по формуле Р/220, где Р — паспортная мощность подключаемых приборов. Так, для 100-ваттной лампочки ток составит 0,5А. Зная суммарную мощность всех подключаемых приборов можно подсчитать, подойдет ли выбранный провод или нужно подбирать другой.

Выбор для дома делают из расчета, что на каждый киловатт нагрузки нужно сечение 1,57 кв. мм. Следует придерживаться мощностных характеристик:

  • для меди 8 А на 1 кв. мм;
  • для алюминия 5 А на 1 кв. мм.

Например, если в доме устанавливается агрегат мощностью 5 кВт, то провод для его подключения должен быть рассчитан на 25 А, то есть сечение медного провода должно быть 3,2 кв. мм или больше

Принимая во внимание, что проводимость алюминия составляет около 2/3 (62%) от проводимости меди, его сечение должно быть больше

Диаметр токоведущей жилы измеряют микрометром или штангенциркулем и рассчитывают по формуле S=3,14D2/4, где D— диаметр в миллиметрах. Если жила многопроволочная, то результат определяется сложением сечений всех проволок.

При монтаже проводки можно ориентироваться на такие показатели сечений:

  • 2,5 кв. мм — розетки, кондиционер, стиральная машина, накопительный водонагреватель;
  • 6 кв. мм — электроплита;
  • 1,5 кв. мм — освещение.

Нагрузка также должна соответствовать способу прокладки. Допустимая нагрузка зависит от условий прокладки: открытая проводка лучше охлаждается, резиновая изоляция допускает нагрев не выше 65 градусов, пластмассовая — 70 градусов. Вот как зависит вид провода от способа укладки проводки:

  1. Двух- или трехжильный:

    • плоский в одинарной или двойной изоляции используется для потолка и стен в штробах или под мягкими отделочными материалами;
    • плоский в двойной изоляции может прятаться за элементами декора или под чистовым покрытием пола;
    • плоский или круглый в двойной изоляции можно скрывать под гипсокартоном.
  2. Двух- или многожильный:

    • круглый провод в двойной или же тройной изоляции используется для открытой проводки по стенам и потолку или скрывается в песчано-цементной стяжке пола в деревянном доме;
    • плоский или круглый в одинарной или двойной изоляции открыто прокладывается в кабель-каналах по потолку и стенам.

Практикующие электромонтажники рекомендуют не экономить, а использовать медные многожильные провода даже там, где можно обойтись одножильным, потому что многожильные, при одинаковом сечении с монолитным, на 5–10% лучше держат перегрузки.

К тому же многожильный провод технически нецелесообразно подделывать, а в «монолите» есть опасность нарваться на подделку — сплав с добавлением меди. Но в любом совете от специалиста есть доля предвзятости, поэтому владельцу дома все же лучше самому определиться, что важнее — экономность алюминия или качественность меди.

Если к такому ответственному этапу ремонта подходить соответственно, можно никогда не узнать, что такое оплавившаяся изоляция, пожар или короткое замыкание. Особенно ответственно нужно подходить к обустройству бань и саун — там повышенные температура и влажность, что приводит к скорейшему износу изоляции.

Соблюдая правила техники безопасности и рекомендации ГОСТов можно защитить от пожара не только собственное жилище, но и свою жизнь.

Как выбрать провод для электропроводки в частном доме или квартире, вы можете узнать из видео-обзора:

Выполнить обустройство домашней электросети невозможно без задействования электрического кабеля.

Какие типы изделий предлагает современный рынок и какой провод использовать для проводки в доме, рассмотрим подробнее.

Порядок монтажа защитного заземления

Защитное заземление – система преднамеренного соединения с землей железных частей электрической установки в целях повышения безопасности ее эксплуатации. Металлические составляющие конструкции под напряжением находиться не должны.

Порядок монтажа:

  • установка заземлителей;
  • прокладка заземляющих проводниковых частей;
  • соединение заземляющих проводников – между собой, электрическим оборудованием.

Вертикальные стальные угловые заземлители, отбракованные трубы в грунт погружают и фиксируют путем забивки либо вдавливания. Круглые стальные части в землю по знаку места заземления вдавливают либо вворачивают. Для выполнения работ применяются особые приспособления, машины – сверлилки, копры, ПЗД-12. Чаще всего для устройства системы применяют электрические заглубители со стандартными редуктором и сверлилкой. Это способствует снижению частоты вращений менее 100 оборотов за минуту и увеличению крутящего момента на вкручиваемом электроде. К концу электрода приваривают забурниковый наконечник, который обеспечивает нормальное погружение рабочей части, рыхлит грунт. Заводской электрод имеет вид полосы 4х40 мм или других размеров. Полоса заземления заострена на конце, имеет винтовой изгиб. Другие типы наконечников для электродов также применяются, для фиксации используют зажимы заземления.

Вертикальные заземлители закладываются на 0.5-0.6 м от планировочной отметки, со дна траншеи выступают до 0.2 м

Важно соблюдать правильные интервалы между электродами – это от 2.5 до 3 м. Горизонтальные медные ленты для заземления и соединения укладываются в траншеи на 0.7 м в глубину от отметки планирования на грунте

Если струбцины, клеммники, болты, тросы, скобы для крепления использовать нельзя, делается сварка внахлест. Стыки покрываются слоем битума – она защитит детали от коррозии. Ширина траншеи составляет 0.5 м, глубина 0.7 м.

Внешний заземляющий контур, прокладка внутренней сети делают по проектным рабочим чертежам.

Каждая клемма заземления должна давать корректные показания. Зажимы заземления устанавливайте по схеме. Вводы в здание проводников делайте как минимум в паре мест. После завершения работ готовится акт, на чертежах размечаются привязки на местности – где проходит каждая полоса заземления.

Магистральная полоса заземления прокладывается на удалении 0.5-0.1 м от поверхностей вдоль стен, расстояние от пола 0.4-0.6 м. Между точками крепления выдерживайте интервал 0.6-1.0 м. В сухих помещениях при условии отсутствия химически активных сред допустима прокладка заземлителей прямо к стене.

Стержни крепят к стенам дюбелями – с применением дополнительных комплектующих либо без них. Широко используют закладные детали, колодки, к которым привариваются полосы. Пистолетом изделия пристреливаются в кирпичные, бетонные основания. В помещениях с высоким уровнем влажности, особенно едкими токсичными испарениями, проводники привариваются к установленным с применением дюбелей-гвоздей опорам. Для зазоров используют стальной полосный держатель штампованного типа, кронштейн. Длина нахлестки в ходе сварки равняется двойному показателю ширины полосы, если она прямоугольная, и шести диаметрам, если используется круглая сталь.

Шина заземления в щит с din рейками может крепиться болтовыми фланцевыми соединителями, обходными перемычками.

Отдельные ответвления использовать тоже можно.

Стальные заземляющие полосы присоединяются сварным способом к металлическим конструкциям, для оборудования предпочтительно крепление на болты, гайки. Другие варианты – пайка и бандаж.

Когда шина заземления будет установлена, клеммы заземления и другие составляющие системы по периметру и внутри здания протестированы, можно будет подсоединять контур заземления. От контура сваркой крепятся заземляющие полосы для внутренних частей здания.

Отдельно взятые элементы заземления потребителя соединяются проводникам в параллельном, а не последовательном порядке.

Заземленное неэлектрическое оборудование

К заземлителю подключаются и конструкции, никак с электричеством не связанные:

  1. Ограждения и прочие конструкции на эстакадах и галереях, в которых при разряде молнии на близком расстоянии наводится опасная разность потенциалов. То же может произойти с трубопроводом или емкостью, содержащими горючее вещество. Из-за наведенного напряжения возможно искрение с последующим взрывом, потому такие конструкции также заземляют.
  2. Изделия, в которых в процессе эксплуатации накапливается статический заряд. В основном это трубопроводы и емкости: статическое электричество образуется из-за трения частиц транспортируемой среды. По этой причине ограничивают скорость подачи топлива в авиалайнеры.
  3. Трубопроводы значительной протяженности. В соответствии с законом электромагнитной индукции, в таких трубопроводах при изменении магнитного поля Земли, а оно всегда нестабильно под действием солнечного ветра, образуются так называемые блуждающие токи. Потому их подключают с определенным шагом к заземлителям.

1.7.93

Внешнюю ограду электроустановок не рекомендуется
присоединять к заземляющему устройству.

Если от электроустановки отходят ВЛ 110 кВ и выше, то
ограду следует заземлить с помощью вертикальных заземлителей длиой 2-3 м,
установленных у стоек ограды по всему ее периметру через 20-50 м. Установка
таких заземлителей не требуется для ограды с металлическими стойками и с теми
стойками из железобетона, арматура которых электрически соединена с
металлическими звеньями ограды.

Для исключения электрической связи внешней ограды с
заземляющим устройством расстояние от ограды до элементов заземляющего
устройства, расположенных вдоль нее с внутренней, внешней или с обеих сторон,
должно быть не менее 2 м. Выходящие за пределы ограды горизонтальные
заземлители, трубы и кабели с металлической оболочкой или броней и другие
металлические коммуникации должны быть проложены посередине между стойками
ограды на глубине не менее 0,5 м. В местах примыкания внешней ограды к зданиям
и сооружениям, а также в местах примыкания к внешней ограде внутренних
металлических ограждений должны быть выполнены кирпичные или деревянные вставки
длиной не менее 1 м.

Питание электроприемников, установленных на внешней ограде,
следует осуществлять от разделительных трансформаторов. Эти трансформаторы не
допускается устанавливать на ограде. Линия, соединяющая вторичную обмотку
разделительного трансформатора с электроприемником, расположенным на ограде,
должна быть изолирована от земли на расчетное значение напряжения на
заземляющем устройстве.

Если выполнение хотя бы одного из указанных мероприятий
невозможно, то металлические части ограды следует присоединить к заземляющему
устройству и выполнить выравнивание потенциалов так, чтобы напряжение
прикосновения с внешней и внутренней сторон ограды не превышало допустимых
значений. При выполнении заземляющего устройства по допустимому сопротивлению с
этой целью должен быть проложен горизонтальный заземлитель с внешней стороны
ограды на расстоянии 1 м от нее и на глубине 1 м. Этот заземлитель следует
присоединять к заземляющему устройству не менее чем в четырех точках.

Порядок изготовления типового заземлителя

Наиболее распространённой формой конструкции типового заземлителя является равнобедренный треугольник, длина каждой из сторон (полос) которого составляет примерно 1,2 метра.

При этом в качестве его вертикальных составляющих используются стальные уголки с типоразмером 40х40 или 45х45 и толщиной порядка 4-5- миллиметров.

В отсутствии стальных уголков в землю устанавливают (забивают) трубные металлические заготовки, имеющие примерно те же типоразмеры, как по диаметру, так и по толщине. Длина вбиваемых труб или электродов для заземления может выбираться от 2-х до 3-х метров (в зависимости от состава почвы).

С информацией по допустимым размерам отдельных элементов заземления, зависящим от формы и материала изделия, можно будет ознакомиться в таблице 1.7.4 ПУЭ.

На рисунке приведена схема расположения заземлителя и состав его элементов.

Забивать уголки (трубы) в землю необходимо таким образом, чтобы их концы выступали над поверхностью грунта примерно на 15-20 сантиметров.

После забивки штырей на требуемую глубину они по периметру соединяются на сварку стальной полосой шириной 30-40 и толщиной 5 миллиметров. При этом обвязка из стальной полосы должна располагаться примерно на полуметровой глубине.

По завершении монтажа вся конструкция заземления засыпается выработанным ранее грунтом, после чего к одному из её углов приваривается провод, протянутый со стороны ГЗШ.

Следует отметить, что технология монтажа выносного заземляющего контура предполагает удаление его от здания не более чем на 10 метров.

Контроль состояния заглублённых в землю элементов организуется в соответствии с графиком, утверждённым соответствующими техническими службами.

1.7.121

В качестве PE-проводников в электроустановках напряжением
до 1 кВ могут использоваться:

1) специально предусмотренные проводники:

жилы многожильных кабелей;

изолированные или неизолированные провода в общей оболочке
с фазными проводами;

стационарно проложенные изолированные или неизолированные
проводники;

2) открытые проводящие части электроустановок:

алюминиевые оболочки кабелей;

стальные трубы электропроводок;

металлические оболочки и опорные конструкции шинопроводов и
комплектных устройств заводского изготовления.

Металлические короба и лотки электропроводок можно
использовать в качестве защитных проводников при условии, что конструкцией
коробов и лотков предусмотрено такое использование, о чем имеется указание в
документации изготовителя, а их расположение исключает возможность
механического повреждения;

3) некоторые сторонние проводящие части:

металлические строительные конструкции зданий и сооружений
(фермы, колонны и т.п.);

арматура железобетонных строительных конструкций зданий при
условии выполнения требований 1.7.122;

металлические конструкции производственного назначения
(подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов,
обрамления каналов и т.п.).

Правила маркировки токоведущих частей согласно ПУЭ

Для обеспечения наглядности, простоты и облегчения распознавания отдельных частей электрической сети согласно п.1.1.30 ПУЭ все электроустановки должны иметь буквенно-цифровое и цветовое обозначение. Причем наличие одного из этих обозначений не снимает необходимость наличия другого.

И единственным послаблением является возможность нанесения обозначения не по всей длине проводника, а только в местах подключения, как представлено на видео.

Цветовая маркировка проводов

Маркировка проводов по цветам является наиболее наглядной и позволяет быстро определиться с назначением любого провода. Такая маркировка может быть осуществлена путем выбора проводов с соответствующим цветом изоляции жил, путем нанесения краски на шины или за счет окрашивания или применения специальной цветной изоленты в местах соединения жил.

Причем краска на шины может наносится не по всей длине, а только в местах подключения или по концам шин.

Итак:

  • Если говорить о цветовом обозначении проводов и кабелей, то начать следует с фазных проводников. Согласно п.1.1.30 ПУЭ в трехфазной сети фазные проводники должны иметь маркировку желтым, зеленым и красным цветом. Так соответственно обозначаются фазы А, В и С.
  • Инструкция для однофазной электрической сети предполагает обозначение фазного провода в соответствии с тем цветом, продолжением которой она является. То есть, если фазный проводник подключается к фазе «В» трехфазной сети, то он должен иметь зеленый цвет.
  • Что же касается нулевых проводников, то они должны иметь голубую окраску. Причем цвет нулевой жилы не зависит от того трехфазная, двухфазная и однофазная сеть перед вами. Он всегда обозначается голубым цветом.
  • Маркировка проводов с полосой желто-зеленого цвета обозначает защитный проводник. Он подключается к корпусу электроприборов и обеспечивает безопасность от поражения электрическим током при повреждениях изоляции электрооборудования.


нулевых и защитных проводников

  • Если нулевой и защитный проводник объединены, то согласно п.1.1.29 ПУЭ такая жила провода должна иметь голубой окрас с желто-зелеными полосами на его концах. Дабы выполнить такую маркировку своими руками достаточно просто взять провод голубого цвета и на его концевых заделках выполнить обозначение краской или использовать для этого цветную изоленту.
  • Что же касается сетей постоянного тока, то красным цветом должна обозначаться положительная жила провода или шины, а отрицательная синим. При этом обозначение нулевой и защитной жилы соответствует маркировке в сетях переменного тока.

Буквенная маркировка проводов

Но маркировка проводов цветная не всегда удобна. В щитках, распределительных устройствах и на схемах значительно удобнее буквенное обозначение. Оно должно применяться совместно с цветовым обозначением.

Итак:

Буквенная маркировка фазных проводов в трехфазной сети соответствует их разговорному обозначению – фаза «А», «В» и «С». Для однофазной сети она должна быть такой же, но это далеко не всегда удобно. Тем более что достоверно определить какая именно фаза не всегда возможно. Поэтому часто используют обозначение «L».

  • Если выполняется маркировка проводов в щитке, то под символом «N» обозначают нулевой провод.
  • Для обозначения защитного провода применяют буквенное обозначение «PE». Кроме того, достаточно часто применяется знак заземления, но дело в том, что он не всегда может точно указать на схему сети.

На фото представлен знак заземления

  • Дело в том, что вы можете встретить обозначение «PEN». Оно обозначает совмещение нулевого и защитного проводника. Это возможно в системах TN-C-S о которых мы говорили в одной из предыдущих наших статей.
  • А вот маркировка проводов электрических постоянного тока выполняется символизмами «+» и «­―». Что соответственно обозначает положительный и отрицательный провод. Для постоянного тока есть еще одно отличие. Нулевая жила обозначается символом «М», что иногда вводит в заблуждение.

Итог

Подводя итог всему сказанному, обратим внимание на рекомендации, которыми делятся опытные мастера:

  • Перед началом монтажных работ желательно подготовить чертеж будущей конструкции, который может понадобиться при дальнейшей эксплуатации. При его наличии легче восстановить в памяти схему расположения штырей.
  • Отрезки электродов допускается вбивать не только в угловых точках треугольника. Их можно располагать как в линию, так и по дуге. Главное, чтобы суммарное сопротивление растеканию тока, создаваемое всей цепочкой, не превышало 3-4-х Ом.
  • Если оно больше нормируемого значения, то систему придется доработать, добавив в нее еще пару стержней.
  • При отсутствии опыта самостоятельной проверки сопротивления заземления — лучше всего пригласить специалиста.

https://youtube.com/watch?v=OWmyC8hspOs

После ознакомления со всеми тонкостями процесса сборки и тестирования ЗК, попытаться изготовить его своими руками может каждый желающий.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: