А кто у нас певец?
Напоследок хочется высказать некоторые субъективные замечания по поводу использования компьютера в качестве источника сигнала. Естественно, что собирать схему №3 или №5 для того, чтобы подключить к выходу звуковой карты типа ESS688 особого смысла не будет — разницу в качестве звука не будет слышно из-за особенностей этой весьма старой «звучалки».
Данные схемы просто напрашиваются на работу с картами типа SB Live! и более поздними моделями. Конечно, если у вас в компьютере стоят девайсы, создающие кучу наводок при обращении к ним – качественную музыку придется слушать только в минуты отдыха.
Другой вопрос –— как слушать музыку в наушниках? Лично я использую набор Winamp+DFX. Может, мне просто не встречалось других проигрывателей, качество которых меня устроило? Наверное…
Но дело вот в чем: включите эквалайзер, визуализацию установите в виде анализатора спектра — «тонкие полоски» с максимальным качеством кадров в секунду, «огненный» стиль (когда на пиках верхушки полосок становятся красными). И что вы увидите? Скорее всего, практически все полоски одновременно будут доставать до максимальной отметки… (Интересно, многие ли считают это нормой?)
А теперь попробуйте левый ползунок («preamp» — «предварительное усиление») немного сдвинуть вниз, так, чтобы до верхней отметки цветные полоски доставали только иногда.
Если у вас хорошая акустика и битрейт записи не ниже 160, разницу почувствуете сразу (громкость звука понизится, но это легко компенсировать регулятором громкости). В случае, когда разницу в изменении качества звучания услышать не удается — вы, вероятно, уже давно пользуетесь наушниками при езде в общественном транспорте (прослушивание музыки сокращает дорогу, но при этом сильно ухудшает слух).
Если вы считаете, что при воспроизведении музыки все частоты должны звучать одновременно и на полную громкость — вынужден вас разочаровать. В этом случае такой сигнал не будет иметь к музыке никакого отношения, и в радиотехнике для него даже есть специальное название — «белый шум». Подобной смесью частот проверяют, сколько времени могут выдержать динамики без необратимых механических (и прочих) повреждений. Расслышать при этом все ньюансы звучания инструментов вряд ли получится… Так что, если для вас самое главное при прослушивании музыки — громкость, даже усилители вышего класса могут не оправдать возлагавшихся на них надежд.
Между прочим, изготовление высококлассных усилителей для личного пользования не менее увлекательное занятие, чем разгон процессоров и видеокарт. По крайней мере, мне так кажется…
Чутких вам ушей!
Источник
Двухэлектродные лампы
- схема усилителей на лампах
- схема усилителя звука
- усилитель звука на транзисторах
Двухкаскадный усилитель на транзисторах
Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.
Рис. 5. Схема простого двухкаскадного усилителя НЧ.
Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.
В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.
Вход усилителя
Вход усилителя – это клеммы Х1 и Х2.
Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.
Фильтрация входного сигнала
Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.
По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.
Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.
Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.
Рабочая точка и смещение базы
Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.
Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.
Как определяется класс усилителя
Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.
Например, точка по центру это А класс.
А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.
Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.
Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.
Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.
Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.
А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.
Простой усилитель на одном транзисторе
Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.
Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.
Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.
Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.
Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).
LM3886 параллельное соединение
Даже многочисленные коммерческие УМЗЧ использовались с параллельной парой LM3886. Но это совсем не дело. Даже очень небольшое смещение постоянного или переменного тока вызывает сильный ток между встроенными выходными контактами. Большинство схем рекомендует 0,1 Ом, но если разница между выходами двух усилителей составляет 1 В, это означает что ток равен уже 5 А.
Хотя это может показаться допустимым, надо учитывать допуски сопротивления и встроенные напряжения смещения. Используя один конденсатор для линии обратной связи C2, два усилителя имеют точно такое же низкочастотное АЧХ, что исключает возможность прохождения очень низкой частоты, которая вызывает большие смещения на выходах интеграторов усилителя мощности.
Если используются резисторы с допуском 0,1%, можно ожидать, что наихудший циркулирующий ток между интегральными схемами будет около 220 мА при том же пиковом напряжении, что представляет собой значительное снижение. Это уменьшит распределение нагрузки с 28 Вт до 3 Вт (в зависимости от выходного напряжения)
Обратите внимание, что смещение по постоянному току не учитывается, но всё-же должно приниматься во внимание
В общем лучший совет, который можем дать о параллельной работе LM3886 — не делайте этого!
TDA7294 можно использовать в мостовом включении, но только при нагрузке 8 Ом, а напряжение питания не должно превышать ± 35 В. Добавление внешних силовых транзисторов позволяет использовать и усилители мощности LM3886 в мосте, но общая схема станет очень дорогая и сложная.
Нет сомнений в том, что метод усиления транзисторами работает, но это не то, что можно предложить для системы hi-fi. Если же используете сабвуфер, скорее всего вообще не услышите искажения, так как они уменьшаются с уменьшением частоты.
Усовершенствование усилителя
Схема окончательного варианта УМЗЧ показана на рис.4. Транзистор VT9 (МП25) контролирует ток через выходные транзисторы VT7 и VT8.
Рис. 4. Окончательный, доработанный вариант схемы УМЗЧ на транзисторах.
Рис. 5. Продолжение схемы УМЗЧ с рисунка 4.
При превышении его заданной величины срабатывает триггер на туннельном диоде VD5, и реле К1, К2 отключают питание усилителя. Кнопка SB1 сбрасывает триггер в исходное состояние.
К сожалению, на выход “пролезают” заметные пульсации питающих напряжений, так что питать усилитель нужно от стабилизированного источника.
Звучание и этого усилилителя, и усилителя по рис.1 мне нравилось больше, чем лампового УНЧ радиолы “Симфония-2”-лучшего продукта советской промышленности в те годы.
Усилители на МДП-транзисторах
Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».
Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.
Экономичный УНЧ на трех транзисторах
Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.
При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.
Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.
Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.
Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:
1(мкА) = 52 + 13*(Uпит)*(Uпит),
где Uпит — напряжение питания в Вольтах (В).
Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.
Схема УНЧ на полевом и кремниевом транзисторах
Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.
При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.
Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.
Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.
Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.
Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).
Источник питания для УМЗЧ
Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.
Усилитель Холтон на плате с деталями
Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе самодельного домашнего аудиокомплекса.
«Альтернативные» конструкции
- Очень низкое значение уровня нелинейных искажений в выходном сигнале.
- Высших гармоник меньше, чем в транзисторных конструкциях.
Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.
Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.
Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество
Поэтому нужно обращать внимание в первую очередь на них, а не на мощность
Трекаскадный УНЧ с непосредственной связью
На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.
Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.
В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].
Экономичный УНЧ на трех транзисторах
Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.
При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.
Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.
Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.
Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:
1(мкА) = 52 + 13*(Uпит)*(Uпит),
где Uпит — напряжение питания в Вольтах (В).
Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.
Трекаскадный УНЧ с непосредственной связью
На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.
Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.
В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].
Двухкаскадные УНЧ с непосредственной связью между каскадами
Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.
Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).
Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.
Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.
Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.
В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.
Рис. 14. Двухкаскадный УНЧ с полевым транзистором.
Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).
Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.
Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.
Трекаскадный УНЧ с непосредственной связью
На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.
Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.
В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].
Напряжение и ток источника питания
TDA2050 может питаться от раздельного (двухполярного) источника или от однополярного БП. Выходная мощность усилителя будет выше при раздельном питании, поэтому им и воспользуемся.
Желаемая выходная мощность и полное сопротивление динамика будут определять, какое напряжение нужно от источника питания. Но прежде чем сможем рассчитать напряжение, нужно рассчитать пиковое выходное напряжение усилителя (V opeak).
Пиковое выходное напряжение
Пиковое выходное напряжение можно найти по следующей формуле:
Следовательно пиковое выходное напряжение данного усилителя мощностью 25 Вт с динамиками 6 Ом будет:
Таким образом, при выходной мощности 25 Вт максимальное напряжение на динамиках составит 17,3 В.
Максимальное напряжение питания УНЧ
Теперь можем найти максимальное напряжение питания (V max supply), то есть напряжение необходимое усилителю для получения желаемой выходной мощности. Безопасный предел напряжения для TDA2050 составляет ± 25 В, поэтому не превышайте его!
Формула для расчета максимального напряжения питания имеет вид:
Холостой ход — это увеличение выходного напряжения трансформатора когда нет нагрузки для потребления тока, что происходит когда усилитель не воспроизводит музыку. Точное значение должно быть указано в спецификации трансформатора. Трансформатор, который будем использовать, имеет разброс 6%, поэтому максимальное напряжение питания:
Таким образом данный источник питания должен выдавать ± 24,9 В, чтобы усилитель мог управлять динамиками 6 Ом при 25 Вт. Символ ± означает, что положительное напряжение на шине равно +25 В, а отрицательное напряжение -25 В. И общий ноль (масса).
Максимальное напряжение трансформатора
Цель состоит в том, чтобы найти трансформатор который может выдавать максимальное напряжение питания, близкое к предельному напряжению, необходимому для усилителя на конкретной микросхеме (у нас ТДА2050).
Номинальное напряжение трансформатора говорит только о выходе переменного напряжения. Напряжение постоянного тока, которое получим после того как мостовые выпрямители на блоке питания преобразуют переменный ток в постоянный, будет фактически выше в 1,41 раза. Ещё нужно учитывать скачки напряжения в сети и разброс напряжения вашего трансформатора.
Максимальное напряжение питания которое получите от трансформатора можно рассчитать по формуле:
Начнём с номинала трансформатора 15 В переменного тока чтобы посмотреть, будет ли оно обеспечивать максимальное напряжение питания, необходимое для усилителя:
Таким образом, 15-вольтовый трансформатор даст максимальное напряжение питания 24,7 В постоянного тока после стабилизации питания. Это близко к максимальному напряжению питания 24,9 В, необходимому для данного усилителя, но теперь давайте точно рассчитаем, какую выходную мощность получим с ним.
Выходная мощность УНЧ от максимального напряжения питания трансформатора. Это вычисление полезно если уже есть трансформатор и хотим посмотреть, сколько выходной мощности будет генерировать усилитель:
Максимальное напряжение питания от трансформатора 15 В составляет 24,7 В, поэтому выходная мощность которую получим от усилителя:
Трансформатор 15 В даст выходную мощность 24,6 Вт на колонках сопротивлением 6 Ом, и это достаточно близко к желаемым 25 Вт.
Мощность трансформатора нужная усилителю
Теперь можем определить сколько мощности требуется от трансформатора для питания усилителя. Мощность обычно указывается в номинале «ВА (или VA)» в характеристиках трансформатора. Для расчета минимального VA сначала должны найти общую мощность (P питания) трансформатора, необходимо для питания усилителя.
Общая мощность зависит от максимального напряжения питания которое получаете от трансформатора, пикового выходного напряжения усилителя, сопротивления акустической колонки и тока покоя (QDC) TDA2050 (90 мА):
Таким образом, наш 15-вольтный трансформатор должен обеспечивать как минимум:
Теперь будем использовать полную мощность, чтобы найти минимальную номинальную мощность ВА для трансформатора.
Преобразование общей мощности в VA
Чтобы найти минимальное значение ВА для трансформатора, общее правило заключается в умножении общей мощности на 1,5 раза. Для данного трансформатора 15 В номинальное значение ВА должно быть:
49,4 Вт х 1,5 = 74,1 Вт
Это на канал. Для стерео-усилителя просто умножаем на два:
74,1 Вт х 2 = 148,2 Вт
Таким образом, все что выше 150 ВА, обеспечит усилитель достаточной мощностью. Это довольно полезно знать, потому что если ваш трансформатор слабее, то усилитель может обрезать или искажать звук на более высокой громкости и басах.
Схема однотактного УНЧ на транзисторе
Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.
С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.
биполярные транзисторы.
На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.
Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21
Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера
Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.
Работа в промежуточных классах
У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.
Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.
Первый вариант УНЧ на транзисторах
В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. Наушники подсоединены к коллекторной электроцепи транзистора VT2 усилителя.
Стенд для пайки со светодиодной подсветкой
Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…
Подробнее
Поступающие на потенциометр R1 колебания НЧ через его движок и емкость С1 идут на базу VT1 1-го каскада в результате чего происходит частичное усиление. Данный резистор еще играет роль регулятора усиления (регулятор громкости), поскольку с изменением его сопротивления меняется напряжение, поступающее на базу VT1, и соответственно изменяется уровень усиленного сигнала.
Далее частично усиленный сигнал с сопротивления R3 через разделительный конденсатор идет на базу второго транзистора, в результате чего сигнал дополнительно усиливается и выделяется на наушниках, которые являются нагрузкой выходной цепи.
Сопротивления R2 и R4 обеспечивают положительное смещение на базе транзисторов (по отношению к эмиттеру). В момент отладки УЗЧ, данные сопротивления необходимо подобрать под конкретно используемые транзисторы, поскольку каждый транзистор имеет определенное отклонение коэффициента усиления.
Настройка транзисторного усилителя низкой частоты
Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.
Паяльная станция 2 в 1 с ЖК-дисплеем
Мощность: 800 Вт, температура: 100…480 градусов, поток возду…
Подробнее
Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.
В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.
В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.