Esr метр своими руками схема

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» — со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества — пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.

Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал — способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее — враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Конструкция наручных электронных часов с микроконтроллером и двумя светодиодами, показывающим время в двоичном коде.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Теория

Итак, обо всем по порядку.

Для начала позвольте немного теории, чтобы полнее представлять суть проблемы. ESR — это аббревиатура от английских слов Equivalent Serial Resistance, в переводе означает «эквивалентное последовательное сопротивление».

В упрощенном виде электролитический (оксидный) конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного специальным составом — электролитом.

Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности.

К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками.

Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, причем последний находится в самом конденсаторе.

Зарядные и разрядные токи вызывают нагрев этого «резистора», что еще больше усугубляет разрушительный процесс. Другая причина выхода из строя электролитического конденсатора — это известное радиолюбителям «высыхание», когда из-за плохой герметизации происходит испарение электролита.

В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается.

Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением 10…20 Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения.).

Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до 3…5 Ом) на работе импульсных блоков питания, выводя из строя более дорогостоящие транзисторы или микросхемы.

Принцип работы описываемых измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Из курса радиотехники известна формула:

где Хс — емкостное сопротивление, Ом; f -частота, Гц; С — емкость, Ф. Например, конденсатор емкостью 10 мкФ на частоте 100 кГц будет иметь емкостное сопротивление 0,16 Ом, 100 мкФ — 0,016 Ом и т.д. В реальном конденсаторе это значение будет несколько выше из-за наличия паразитной индуктивности (сопротивления потерь), однако для наших целей особая точность измерений не нужна.

Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (т.е. ESR) задают именно на этой частоте.

Следует отметить, что формула (1) справедлива для переменного тока синусоидальной формы, описываемые же измерители работают с генераторами прямоугольных импульсов. Но, как было замечено выше, нам нужно не точность измерений, а возможность различать конденсаторы с ESR, например, 0,5 и 5 Ом.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Как проверить конденсатор мультиметром на исправность

На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости. Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор мультиметром.

Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.

Если у Вас стрелочный прибор, то проверяем конденсатор так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:

Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.

Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.

Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.

Поэтому я купил несколько разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе. Стало удобнее проверять детали, я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра. А зажим использовать стал иногда — для проверки новых купленных деталей.

Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:

В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.

И я поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей, но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:

Измерительные приборы

Как и любую радиодеталь, ёмкостной элемент можно измерить. Для этого используются измерительные приборы: омметр или мультиметр. В ходе работы неисправный конденсатор можно определить на вид ещё до того, как выпаивать из платы.

Проверка конденсатора мультиметром

Выявить обрыв детали по снижению или полному отсутствию ёмкости можно мультиметром с опцией измерителя емкости электролитических конденсаторов. Если в результате проверки ёмкость отсутствует или понижена, элемент цепи не исправен.

Когда ёмкость детали больше 20 мкФ, то проверку поможет провести любой тестер в режиме омметра. Выставляется предел измерения «200 кОм». После выпаивания для снятия остаточного заряда выводы детали кратковременно закорачиваются между собой.

На выводах измеряется сопротивление, которое будет расти в зависимости от ёмкости. Чем она меньше, тем быстрее растёт величина сопротивления и достигает бесконечности. Бесконечность показывает полностью заряженный конденсатор. Если этого не происходит, а на дисплее сразу значение бесконечности, значит, у детали есть обрыв.

Важно! При значении ёмкости менее 20 мкФ такой способ не годится. Увеличение сопротивления до бесконечной величины в этом случае происходит быстро, его невозможно заметить

Измерение фактических емкостных значений

Пробой между пластинами происходит в результате внутреннего короткого замыкания. Измерение емкости омметром при этом показывает ноль или некоторое сопротивление, которое не растёт. Даже если чуть увеличивается, то не достигает бесконечности.

При внешнем осмотре такие элементы заметны. У электролитических конденсаторов на верхней части корпуса имеются насечки крестом. При коротком замыкании пластин электролит внутри закипает и выделяет газ. Газ пытается выйти наружу и в этом месте раскрывает деталь. Верхушки неисправных элементов разорваны или вспучены.

Измерение прибором ESR

Для измерения емкости конденсатора для определения увеличения внутреннего сопротивления применяют особый прибор – ESR. При его использовании деталь выпаивать не обязательно.

При заряде или разряде неисправного конденсатора увеличение этого параметра указывает на снижение пикового тока через элемент. Картина такая, как будто в цепи с измеряемым элементом находится последовательно подключенный резистор и вносит задержку.

Это называется эквивалентное последовательное сопротивление – ЭПС. В английском языке – ESR.

Самодельный С – метр

Собрать простой измеритель емкости конденсаторов своими руками можно на интегральной микросхеме серии 155ЛА3.


Схема измерителя ёмкости на микросхемах серии 155ЛА3

На самодельную печатную плату устанавливается микросхема К155ЛА3. Плату предварительно отмывают от грязи и флюса, которые останутся после изготовления. Используемые детали:

  • микросхема К155ЛА3;
  • диоды КД 509;
  • подобранные резисторы 47 кОм;
  • резисторы 11 кОм;
  • конденсатор 0,1 мкФ;
  • подобранные ёмкости: С1 0-50 пФ, С2 0-500 пФ, С3 0-5000 пФ, С4 0-0,05 мкФ.

К выводам присоединяется питание 5 В. На вывод 7 – минус, на вывод 14 – плюс. Выводы считаются от ключа, нанесённого на корпус. Источник питания – 5 В при токе 0.1 А.

Проводники, которые соединяют резисторы с переключателем, выполняются по возможности короче. Переменные резисторы после подбора заменяются постоянными эквивалентами. Настройку выполняют с измерительным прибором, который будет использоваться.

Регулировка сводится к установке максимальных границ каждого диапазона при помощи подбора резисторов 47 К.

↑ К вопросу о точности вообще

Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил. При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.

На первом фото ЭПС конденсатора 0,03 Ом.

↑ О деталях

Резисторы R10, R12 и R11, R13 от которых зависят начало, и конец измерительного диапазона подбираются в процессе градуировки. Значения этих резисторов могут отличаться от стандартных значений ряда Е24 , поэтому наверняка будут наборными как у меня. Допускаю, что и вовсе ничего подбирать не придется, если будет использован рекомендуемый мультиметр и мои шкалы. Это возможно при стандартизации в производстве измерительных головок, но полностью полагаться в этом вопросе на китайских товарищей я бы не стал.

Еще одна трудоемкая часть схемы – трансформатор

. Я использовал магнитопровод от согласующего трансформатора из блока питания АТХ. Учитывая то, что это стандартный Ш-образный сердечник, намотка не должна вызывать особых затруднений. Первичная обмотка содержит 400 витков провода диаметром 0,13 мм, вторичная 20 витков провода диаметром 0,2..0,4 мм. Вторичная обмотка у меня располагается между двумя слоями первичной, насколько это принципиально здесь — не знаю, просто по старой привычке.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Устройство и характеристики конденсатора

Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.

Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ

Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).


Единицы измерения ёмкости

В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.

Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:

Rс =1/6,28*f*C,

где:

  • Rc – емкостное сопротивление, Ом;
  • 6,28 – 2 π;
  • f – частота тока, Гц;
  • C – емкость данного конденсатора, Ф.

Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора

Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.

По типу исполнения конденсаторы постоянной ёмкости бывают:

  • полярные электролитические;
  • однослойные и многослойные керамические;
  • высоковольтные керамические;
  • полиэстеровые;
  • танталовые;
  • полипропиленовые конденсаторы.

Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.

Как проверить конденсатор мультиметром на работоспособность не выпаивая

Честно говоря желательно все же выпаивать детали. Если схема простая, можно попробовать перерезать контактные дорожки скальпелем — те которые ведут к конденсатору, около его ножек.

Промеряем его емкость как обычно, потом паяльником залуживаем дорожки, порезы заполняются оловом, дорожка восстановлена. Я так проверил электролитический кондер на плате моим универсальным тестером, благо тут полярность не нужно соблюдать, что удобно:

Еще один способ проверки конденсаторов на плате это — пропайка или прогрев. Некоторые неисправные электролитические конденсаторы начинают снова работать если их контакты хорошенько пропаять. Сам конденсатор прогревается при этом, после этого устройство начинает работать. Если такое случилось, нужно все равно выпаять этот конденсатор и заменить на новый.

Если есть схема устройства на которой указаны напряжения или в опорных точках — то это самый правильный вариант проверки. Сняв показания с этих точек и сверив их с теми что на схеме по цепочке можем проверить элементы схемы. А на платах различных устройств так же есть контрольные точки, по которым мастер и «вычисляет» неисправные компоненты:

Для получения исчерпывающих характеристик снова подключаем наш универсальный прибор. У конденсатора есть такая важная характеристика — его эквивалентное последовательное сопротивление (ESR). Не будем сегодня углубляться в эту тему, скажу лишь, что наш прибор прекрасно «видит» эту характеристику.

Если величина ESR превышает 5 ом, то даже при отсутствии внешних признаков (вздутие, пробой) такой конденсатор нужно выпаивать и менять на новый. Опять же для чистоты эксперимента можно промерять сначала исправный конденсатор и взять его характеристики как эталонные.

Как проверить конденсатор мультиметром

В данном материале я расскажу, как можно проверить исправность конденсатора с применением мультиметра. Итак, давайте приступим.

Определяем полярный или неполярный конденсатор

Существуют две разновидности конденсаторов: полярный и неполярный. К полярным конденсаторам относятся в основном электролитические и у них есть плюс и минус.

Подобные конденсаторы крайне чувствительны к полярности. Если вы ее перепутаете и впаяете такой элемент наоборот, то при первом же включении конденсатор просто выйдет из строя. И если вы установили современный конденсатор с так называемыми насечками,

то он просто вздуется и раскроется по этим насечкам, которые как раз и предназначены для того, чтобы предотвратить взрыв. Если же был впаян старый советский электролитический конденсатор, то тут есть вероятность взрыва

Так что будьте внимательны и всегда обращайте внимание на полярность изделия

Кстати, определить ее легко. На полярных конденсаторах минусовая ножка выделяется черной птичкой или светлой полосой, например, как здесь:

К чему это я все рассказываю? К тому, что при проверке нам тоже важна полярность или неполярность конденсатора.

Итак, с полярностью понятно, давайте теперь разберемся, как проверять конденсатор. Вспоминаем главное свойство конденсаторов. Оно заключено в том, что он пропускает постоянный ток только в первые секунды времени (пока идет заряд конденсатора) и как только конденсатор набрал свою емкость, ток перестает течь.

Важно. Для проверки мультиметром подойдут конденсаторы емкостью от 0,25 мкФ

Приступаем к проверке полярного конденсатора

Итак, сегодня мы будем проверять этот конденсатор:

Берем мультиметр, выставляем на приборе прозвонку или же измерение сопротивления. Так как в таком режиме измерительный прибор выдает постоянное напряжение, то прислонив щупы и строго соблюдая полярность (черный щуп на минус, а красный на плюс), мы начнем заряжать наш испытуемый конденсатор.

Поэтому вначале на приборе будет минимальное значение сопротивления, которое будет расти по мере зарядки конденсатора, и в конце концов на приборе загорится «1». Это значит, что достигнут предел измерения на вашем мультиметре.

Если же прислонив щупы к выводам конденсатора вы на дисплее обнаружили нули и стоит писк, значит в конденсаторе было короткое замыкание и он пробит. Если же сразу увидели «1», то значит внутри конденсатора обрыв.

Данное изделие признается неисправным и поэтому его нужно выкинуть.

Проверяем неполярный конденсатор

В таком варианте проверка будет предельно проста. На мультиметре выставляем измерение сопротивления на Мегомы и прислоняем щупы к выводам конденсатора, при этом полярность не играет никакой роли. И если на дисплее вы увидите сопротивление менее двух МегаОм, то данный конденсатор негоден, его также следует выкинуть.

Если же в вашем приборе присутствует следующий разъем,

То проверка конденсаторов упрощается в разы, вы просто вставляете концы в разъем и видите емкость конденсатора.

Заключение

Это все, что я хотел вам рассказать о проверке конденсатора с применением мультиметра. Если статья была вам интересна и полезна, то оцените ее пальцем вверх

Спасибо за ваше внимание!

↑ Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens . Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой. На мой взгляд, схема очень удачна и заслуживает повторения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: