Монокристаллические солнечные батареи
За последние годы, в соответствии с данными EPIA (European Photovoltaic Industry Association – союз производителей устройств для выработки энергии фотоэлементами) в общем числе произведенных солнечных батарей 52,9% – поликристаллические, 33,2% – монокристаллические, остальные – либо аморфные, либо с иным типом кремниевых элементов. Таким образом, по объему производства пока доминируют солнечные батареи на поликристаллах. Хорошо ли это, и столь уж необходимо ратовать за более быстрые темпы внедрения именно монокристаллических панелей?
Чтобы ответить на этот вопрос, рассмотрим конструктивные особенности последних.
Материалы, функционирование и показатели эффективности
Монокристаллические солнечные батареи представляют собой панель, собранную из нескольких отдельных силиконовых фотомодулей (обычно их не меньше десяти). Эти элементы монтируются в прочный корпус, который обеспечивает соответствующую защиту фотомодулей, как от пыли, так и от атмосферных осадков.
Внешний вид монокристаллического фотомодуля представлен на рис. 1, а самой батареи – на рис.2.
В чём преимущества подобной компоновки?
- Такая панельная конструкция допускает устойчивую эксплуатацию солнечных батарей при самых различных условиях: на суше, и на море, в горной, либо равнинной местности и т.д.
- Монокристаллические солнечные батареи комплектуются из отдельных модулей с применением кремния сверхвысокой чистоты. После «выращивания» монокристалла, который получается методом вытяжки из жидкого кремнийсодержащего расплава, он разрезается на части толщиной, не превышающей 0,4 мм. Далее следует обработка этих кристаллов с целью придания им формы, которая требуется для встраивания в фотоэлектрическую панель.
- Наличие единой фотоэлектрической панели резко увеличивает коэффициент полезного действия монокристаллических батарей, который достигает 22% (панели, используемые в космических технологических решениях, имеют ещё более высокий КПД – до 38%, но практическое применение космических технологий в практику сдерживается высокой себестоимостью производства). Для сравнения – поликристаллические панели имеют КПД не выше 17…18%.
В чём причина высокой эффективности монокристаллических солнечных батарей?
Поликристаллические панели проигрывают монокристаллическим благодаря тому, что при их производстве применяется не только первичный, более «чистый» кремний, но также и его отходы, извлекаемые при утилизации отработанных солнечных батарей. Кроме того, недостаток поликристаллического кремния заключается в том, что, у него существуют зоны зернистых границ (см. рис. 3), на которых фотоэлектрическое преобразование энергии солнечного излучения в электрическую энергию происходит значительно хуже.
Таким образом, при одинаковой заявленной мощности габаритные размеры монокристаллических солнечных батарей будет меньше, чем поликристаллических.
Почему же производство поликристаллических панелей по-прежнему происходит в значительных масштабах?
Всё пока определяется стоимостью таких панелей, ибо монокристаллические солнечные батареи нуждаются в значительно более высококачественном кремнии. Хотя, если пересчитать на удельную мощность (соотношение цены панели к вырабатываемой ею солнечной энергии), то монокристаллические панели проигрывают поликристаллическим не более 10%. Поэтому, с усовершенствованием технологии получения высокочистых монокристаллов кремния, перспективность использования именно монокристаллических солнечных батарей станет очевидной.
Ведущие производители монокристаллических солнечных батарей
Наибольшими показателями надёжности и эффективности обладают изделия, производимые следующими фирмами:
- Elkem A/S Silicon Metal Division (Норвегия);
- Sdad Espanola de Carburos Metalicos SA (Испания);
- Eckart GmbH and Co (Германия);
- Globe Metallurgical (США);
- Dow Chemical Corporation (Южная Корея).
На отечественном рынке имеются также панели, реализуемые компанией
- “Солнечный ветер” (Краснодар), с монокремнием от Nitol Solar (Россия) и с комплектующими из Германии;
- Хевел ( Новочебоксарск);
Технические характеристики одной из лучших монокристаллических панелей SolGen 200 Вт/24 В (США) составляют:
- номинальная мощность 200 Вт;
- габаритные размеры (длина*ширина*высота) 1580*808*35 мм;
- диапазон температурной эксплуатации от -50°C до +90°C;
- гарантийный срок службы панелей не менее 30 лет;
- предоставляется 5-летняя гарантия на всю систему.
Теперь об аморфных батареях
Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.
Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстрее деградируют – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.
Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.
Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.
Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей. Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.
При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет. На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб. Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.
Цена
Солнечные батареи на разных фотоэлементах обладают и различной стоимостью. Расценки на монокристаллические панели несколько выше (обычно в пределах 10%), что связано с более дорогостоящим технологическим процессом и необходимостью использовать кремний высокой чистоты.
Таким образом, прежде чем решать, какие именно модули выбрать, нужно определиться с условиями их использования, местом установки и размерами бюджета. По сути, солнечной электростанции безразлично, какая именно панель производит для нее ток, главное – показатели выходной мощности и напряжения. А эти значения могут быть одинаковыми и для изделий на разных типах ячеек, отличаться они будут только площадью поверхности. Поэтому если габариты не критичны, то можно приобрести солнечные батареи той же производительности (на поликристаллах), но с чуть большей площадью, стоить они будут несколько дешевле.
Эффективные решения для вашего дома
Как видите, мы так и не смогли дать однозначный ответ на вопрос о том, какие фотоэлементы предпочтительнее — моно- или поликристаллические. Наша компания осуществляет продажу солнечных батарей с панелями обоих типов — мы предлагаем только проверенные решения, эффективность которых доказана на практике. Приглашаем к сотрудничеству застройщиков и собственников коттеджей, заинтересованных в получении доступной, а главное экологически безопасной электроэнергии:
· подберем солнечные батареи с учетом площади дома, климатических и ландшафтных особенностей;
· предоставим долгосрочную гарантию на приобретенный товар;
· за умеренную плату выполним обслуживание приобретенных у нас систем;
· предложим несколько вариантов солнечных батарей с детальным описанием плюсов и особенностей каждой из них — вы сможете подобрать для себя лучший вариант.
Позвоните нам, и мы подробнее расскажем о преимуществах солнечных батарей, особенностях их эксплуатации и выгоде от использования предлагаемых технологий.
20 Вт поликристаллическая солнечная панель
Цена: $ 59.54 + $3.13 доставка в РФ
Перейти в магазин
В обзоре немного теории, советы по установке, снятие основных характеристик при разных уровнях освещённости.
Если коротко: панель работает и выдаёт заявленную мощность.
Немного теории:
В настоящее время из всех типов солнечных батарей, наибольшее распространение получили солнечные панели: монокристаллические и поликристаллические, последние из которых часто также называют «мультикристаллическими солнечными панелями».
Материалом для изготовления монокристаллических солнечных панелей, является сверх чистый кремний, использующийся также для производства полупроводниковых приборов в радиоэлектронике, и хорошо освоенный современной промышленностью. Стержни кремниевого монокристалла, медленно растут» и вытягиваются из кремниевого расплава, а далее разрезаются на части, с их толщиной 0,2-0,4 мм и уже используются после их последующей обработки, для изготовления фотоэлектрических элементов, входящих в состав солнечных панелей.
Когда происходит медленное охлаждение кремниевого расплава, то из него получается поликристаллический кремний, использующийся для изготовления поликристаллических солнечных панелей. В этом случае операция вытягивания кристаллов кремния из расплава полностью опускается, а сам процесс менее трудоемок, нежели при изготовлении монокристаллического кремния, а соответственно и такие солнечные батареи дешевле.
Основные отличия «моно» и «поли» кристаллических типов солнечных батарей:
— Эффективность преобразования солнечной энергии в электрическую. Монокристаллические панели при их серийном производстве – имеют эффективность максимум до 22%, а используемые в космических технологиях – даже до 38%. У серийно выпускаемых поликристаллических панелей – эффективность составляет по максимуму – 18%.
— Внешний вид. У монокристаллических элементов солнечных панелей – углы скруглены. Округленность их форм связана здесь с тем, что монокристаллический кремний, при его производстве получают в цилиндрических заготовках. Поликристаллические элементы солнечных модулей имеют квадратную форму, поскольку их заготовки при производстве – также квадратной формы.
— Цена. В пересчёте на единицу мощности, монокристаллические солнечные панели незначительно дороже (примерно на 10%), чем солнечные панели из поликристаллического кремния.
В итоге можно сказать, что выгоднее использовать поликристаллические солнечные модули – которые при той же мощности, будут немного больше по площади, нежели модули монокристаллические, но зато немного их дешевле.
Думаю теории достаточно, можно переходить к обзору.
Герой обзора:
Конструктивно сама панель вставлена в рамку из алюминиевого профиля и проклеена белым силиконовым герметиком. На тыльной стороне расположена монтажная коробка, в которой к панели припаян 3-х метровый кабель. Также в этой коробке установлен диод Шоттки. Он необходим при объединении нескольких панелей в батарею для предотвращения обратного тока при неравномерной засветке. На другом конце кабеля смонтированы зажимы типа «крокодил». Основные параметры панели находятся на наклейке чуть ниже монтажной коробки.
Распаковав панель я решил сразу проверить её, для чего подключил к «крокодилам» 12-ти вольтовое светодиодное кольцо. Оно засветилось. При чём даже в полумраке при задёрнутых занавесках и шторах (освещённость 42,5 люкса):
Установка (монтаж) солнечной панели:
При установке панелей, необходимо соблюдать угол наклона и азимут. Для жителей северного полушария оптимальный азимут — 180 градусов (строго на юг). Для южного полушария, естественно, наоборот. Долгота места установки не имеет значения. От широты зависит угол наклона, т.е. чем ближе к экватору, тем угол наклона меньше относительно горизонта, ну а чем ближе к полюсам, тем угол больше. Проще всего этот угол посчитать с помощью онлайн калькулятора. Для моего места жительства этот угол равен 44 градусам. Установить я решил обозреваемую панель на внешний блок кондиционера, смонтированный на юго-западной стене многоквартирного дома. Место, конечно, не идеальное, но лучшего я не нашёл.
Внешний вид
Тем не менее, внешний вид – первое, что бросается в глаза. Моноячейки имеют форму квадрата со срезанными углами и однородную поверхность. Связано это с особенностями производства и кристаллической структуры монокристаллов. При выращивании кристаллов кремния получаются заготовки цилиндрической формы, которые после дальнейшей обработки нарезаются на такие «псевдоквадратные» пластины. А равномерность поверхности определяется строгой кристаллической структурой заготовки.
Поликристаллические ячейки обладают ровной квадратной формой. При их производстве на промежуточном этапе получают призматические заготовки, которые нарезаются на квадратные (или прямоугольные) пластины. Их внешняя поверхность неоднородна из-за полиструктуры кремния.
Отсюда вытекает первое различие между модулями на моно- и полиячейках. Это плотность заполнения. Поликристаллические элементы заполняют всю полезную площадь батареи, тогда как между моноэлементами остаются незадействованные пустоты. Это означает, что, несмотря на разницу в КПД отдельных ячеек, производительность полимодуля на единицу площади может оказаться выше.
Типы солнечных панелей, что такое моно и поликристалл
Типы солнечных батарей:
- кремниевые — из кристаллов Si, твердые с определенной хрупкостью плитки. Стандарт, традиционные изделия. Наиболее эффективное, а возможно, единственное высоко результативное решение, если требуется основательная система в классическом ее понимании с хорошей отдачей, окупаемостью. Чаще всего их подразумевают, используя термин «солнечные панели»;
- пленочные — КПД в 3 раза ниже, чем у кремниевых, это эластичная пленка, которую можно наклеивать. Основное преимущество в легкости использования, монтажа, возможности модификации форм. Пленочные солнечные батареи — это инновация, изделие имеет потенциал для совершенствования, но на данное время для серьезной системы их сложно рассматривать. Эластичные фотоэлектрические элементы дороже кремниевых, не окупятся за свой срок эксплуатации, который намного меньший (10–12 лет против 15–20 лет);
- арсенид-галиевые, из аморфного кремния — особо продвинутые технологии, самые производительные батареи, но чрезвычайно дорогие, на рынке встречаются редко, это не массовая продукция.
Кремниевые фотогальванические батареи разделяются на монокристаллические, поликристаллические. Плитки панелей создаются формированием массы вокруг затравки из Si — именно в этом процессе и есть различия для указанных двух вариантов. Финишные этапы одинаковые — делают p-, n-переходы, устанавливают электроконтакты, токоведущие линии, наносят антиотражающий слой.
Какие солнечные батареи лучше: монокристалл или поликристалл (видео)
Напоследок, можно добавить еще несколько советов. Лучше всего отдавать предпочтение монокристаллическому кремнию, так как его продуктивность увеличивается до 20%. Часто в продаже можно встретить солнечные батареи, которые имеют название мультикристалические. Не стоит поддаваться на эту рекламу, так как такое название они получили только для того, чтобы ввести покупателя в заблуждение. Что касается поликристаллических батарей, то судя по отзывам, во второй сезон их продуктивность уменьшается, пример тому садовые фонарики.
Что такое монокристаллическая батарея
Устройство солнечных пластин несложное и состоит из корпуса, фотоэлемента и проводов. Фотоэлемент чаще всего изготавливают из кремния. Под воздействием солнечного света электроды движутся, и выделяемая энергия через подключенные с обеих сторон провода поступает к подсоединенному прибору или аккумулятору. Кремний используется как в монокристаллических, так и в поликристаллических пластинах.
Внешний вид монокристаллической пластины напоминает квадрат, но имеет округленные углы.
Такая форма получается при выращивании монокристаллов. Поверхность батареи однородная и имеет насыщенный синий цвет. За счет однородности пластины достигается очень высокий КПД, так как солнечная энергия не рассеивается, а лучи равномерно освещают всю поверхность. Попадая на поверхность батарей, они проходят через переход в полупроводниковых пластинах на большой площади.
Монокристаллические батареи лучше поликристаллических, так как намного эффективнее и имеют ряд положительных моментов:
- Монобатареи можно крепить на неровную поверхность, они гибкие и при волновом размещении не портятся и не теряют своих свойств.
- Гибкие солнечные батареи превзошли поликристаллические и по эффективности работы в непогоду, монокристаллические модели могут работать и в тени.
- Для зимы также лучше подойдут монокристаллические панели, они могут выдержать минусовую температуру.
К минусу солнечных батарей с монокристаллами можно отнести цену, она будет примерно на 10% выше цены батареи на поликристаллах.
Главное при покупке – тщательно осмотреть панель. Она не должна иметь повреждений, царапин или сколов.
Виды
Перед осуществлением покупки необходимо ознакомиться с типами солнечных батарей, которые предлагают современные компании. От их выбора зависят работоспособность, долговечность, мощность и цена устройства. Разница заключается в материале, из которых изготавливаются фотоэлементы системы. Выделяют несколько вариантов.
Самый бюджетный вид, предназначенный для питания энергией малогабаритной техники.
Из поликристаллического кремния
Отличается невысокой ценой в отличие от батарей с фотопреобразователями из монокристаллического кремния, однако, менее эффективен в процессе получения и обработки солнечной энергии. Данный вариант рассчитан на приобретение частными лицами для энергоснабжения током небольших участков.
Из монокристаллического кремния
Самая дорогая модель, которая отличается высокой производительностью. Такие батареи, как правило, имеют компактный размер, но вместе с тем характеризуются высокой мощностью выработки электроэнергии. Главное преимущество также заключается и в высоком качестве – фотоэлементы крайне устойчивы к влаге и другим неблагоприятным условиям.
Приобретение солнечной батареи должно ориентировать не столько на бюджет, сколько на необходимость обеспечить бесперебойной подачей тока отдельную технику, помещение или предприятие. Чем качественнее выполнены фотоэлементы, тем лучше будет результат работы и долговечнее изделие. В случае если выбор стоит между приобретением панелей из монокристалла или поликристалла, лучше всего выбрать первый вариант.
Физические характеристики кристаллического кремния
Какие полотенца для бани лучше анализ предложений на рынке продаж
Элементы для солнечных панелей изготавливаются из полупроводниковых материалов. Среди них несомненным лидером является кремний, который служит основным материалом для производства панелей.
По своим физическим свойствам кремний бывает монокристаллический, поликристаллический, мультикристаллический и аморфный. Такое разнообразие структур дает ему несомненное преимущество перед другими видами полупроводников, и делает незаменимым в производстве микроэлектроники и электронной техники. То же самое в полной мере касается и солнечной энергетики.
Кремний относится к наиболее распространенным химическим элементом, а его запасы практически неограниченны. Данный материал отличается доступностью, дешевизной и экологической чистотой. В природе он известен как двуокись кремния, а в натуральном виде представлен речным и кварцевым песком, кремнем, кварцем и кварцитами. Кристаллическая решетка кремния похожа на алмазную, поэтому он очень хрупкий и приобретает пластичность лишь при температуре свыше 800 градусов.
При идеальной кристаллической структуре и отсутствии примесей, в температурных условиях абсолютного нуля, кремний можно рассматривать как изолятор. При повышении температуры в нем возникает явление так называемой собственной проводимости. В этом случае электрический ток возникает за счет свободных электронов или дырок, представляющих электронную или дырочную проводимость.
Помещенный в комнатную температуру, чистый кремний ведет себя как химически инертное вещество. Однако, если температура повышается, он начинает вступать в активную реакцию с другими элементами. Особую активность данный материал проявляет в расплавленном виде, создавая серьезные проблемы при его очистке до требуемого уровня.
Солнечные элементы на основе кремния изготавливаются из тонких кремниевых пластинок, нарезаемых на установленную толщину. Предварительно они подвергаются различным видам обработки, и в результате сложных технологических процессов получается нужный материал.
Производство кремниевых кристаллов
Производство солнечных панелей начинается с изготовления моно- или поликристаллических кремниевых элементов. Монокристаллический кремний требует более сложной и трудоемкой технологии.
Его создание осуществляется в несколько этапов:
- Многоступенчатая очистка кварцевого песка, содержащего большое количество диоксида кремния. В результате очистки из него удаляется кислород. Этот процесс выполняется при высокой температуре, обеспечивающей плавление и последующий синтез материала с другими химическими веществами.
- Далее, из очищенного кремния выращиваются кристаллы. Вначале отдельные куски чистого материала закладываются в тигель, внутри которого они разогреваются и плавятся. В расплавленную массу помещается затравка, используемая в качестве основы будущего кристалла. Атомы кремния, оседая слоями на этой затравке, постепенно принимают четкую упорядоченную структуру. Конечным результатом этого продолжительного действия становится крупный однородный кристалл.
- На следующем этапе монокристалл измеряется, калибруется и обрабатывается до требуемой формы. На выходе он получается в форме цилиндра, не совсем удобной для последующей обработки. Поэтому заготовка в сечении превращается в квадрат с закругленными углами. Затем, готовый монокристалл при помощи стальных нитей разрезается на отдельные тонкие пластинки. После этого выполняется их очистка, проверка качества и работоспособность.
- Способность вырабатывать электроэнергию появляется у кремния после добавления в него бора и фосфора. Сторона п-типа покрыта фосфором, обеспечивающим получение свободных электронов. На стороне р-типа располагается слой бора с дырочной проводимостью. Таким образом, между двумя элементами создается р-п-переход. При попадании на ячейку солнечного света, из атомной решетки начнется усиленный выход электронов и дырок. Они распространяются по всему электрическому полю и устремляются к своему заряду. Сбор полученного тока осуществляется с помощью проводников, припаянных с каждой стороны пластины.
- На завершающей стадии пластинки соединяются в цепочки, после чего они собираются в более крупные блоки. Мощность батареи зависит от количества ячеек. При их последовательном соединении возникает определенное значение напряжения, а при параллельном – сила тока. Для защиты от внешних воздействий ячейки покрываются пленкой, переносятся на стекло и устанавливаются в рамку прямоугольной формы. В конце сборки проверяются вольтамперные характеристики, после чего панель готова к эксплуатации.
Выводы
В заключение хотелось бы добавить, что, прежде чем выбрать вид солнечных модулей необходимых вам, для начала определитесь, в каких условиях будете их использовать, где будете устанавливать оборудование, каким бюджетом вы располагаете
Самой солнечной электрической системе неважно, какой именно тип батареи будет вырабатывать ток, основной фактор здесь – это показатели получаемой на выходе мощности и силы напряжения. Добиться нужного значения можно используя оба вида панелей, разница будет лишь в том, какую для этого придется задействовать площадь поверхности
И поэтому, если вас не особо волнует объем занятой площади, то без проблем приобретайте батареи на основе поликристаллов с немного большей площадью фотоэлементов. На приобретение этого оборудование вы потратите значительно меньше средств.
Солнечная панель
Заключение
Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.
При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:
КПД и срок службы
Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.
Температурный коэффициент
В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.
Потеря эффективности
Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.
Стоимость
Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.
Размеры и площадь установки
Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.
Светочувствительность
Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.
Годовая выработка
В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.
Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.
Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.
Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.