Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Что мы узнали?
Итак, мы поговорили кратко о нагревании проводников электрическим током. Нагрев проводников происходит из-за того, что электроны, движущиеся упорядоченно с определенной скоростью, сталкиваются с атомами вещества и отдают часть своей энергии, которая переходит в тепло. Количество тепла можно определить, применив формулу Джоуля-Ленца.
Тест по теме
-
Вопрос 1 из 5
Начать тест(новая вкладка)
Как исправить точку подключения к сети
Нагревание устройства, запах гари, появление искр даже при нормальной нагрузке свидетельствуют о том, что приспособление следует разобрать для установления причины неисправности. А затем причину нужно устранить.
Отключите электричество, которое подводится к подозрительной точке подсоединения. Это можно сделать, повернув ручку старого пакетника, вывинтив пробки или с помощью предохранителей-автоматов.
Проверьте наличие напряжение в сети после отключения. Используйте индикаторную отвертку или рабочую настольную лампу. Убедившись, что свет не зажегся, приступайте к разборке.
Снимите крышку с устройства.
Ослабьте винты лапок, которые фиксируют рабочий механизм в гнезде
Осторожно достаньте внутреннюю часть и провода для дальнейшего анализа.
При осмотре устройства чаще всего обнаруживают следующие неисправности:
- Ослабло зажимное крепление жил электропитания, которые соединяют распределительный механизм с проводкой в помещении. Это повреждение более характерно для мягких алюминиевых жил. Их концы следует осмотреть, удалить раскрошившиеся части. Очистить от изоляции около 9 мм целого провода. Закрепить их зажимами, собрать розетку. Если жилы медные, нужно подтянуть винты зажимов с помощью отвертки.
- Деформация контактных пластинок, которые находятся в гнездах устройства. Является следствием оплавления пластика при превышении нагрузки. Розетку с такой поломкой необходимо заменить.
- Если устройство является проходным (то есть от него идет следующее), то даже без включенной вилки оно может нагреваться. Изделие следует разобрать, проверить зажимы и пластины. После исправления собрать и проверить качество работы.
Причины нагрева проводников и их этапы
Так почему при прохождении тока проводник нагревается? Ответ на этот вопрос независимо друг от друга дали Джеймс Джоуль в 1841 году, и Эмиль Ленц в 1842 году. В связи с этим. открытый ими закон получил название Джоуля-Ленца.
Закон Джоуля-Ленца
Звучит этот закон, как: мощность тепла, выделяемого в единице объема проводника, равна произведению напряженности электрического тока к его плотности. Если из этого определения вам сразу все стало понятно, то наша статья не для вас. Мы поговорим с теми, кто, как и я, когда услышал первый раз это определение, удивленно хлопал глазами.
Поэтому мы будем по минимуму использовать формулы, а постараемся на пальцах объяснить, что значит этот закон:
Соответственно, чем большее количество времени протекает ток по проводнику, чем большее сопротивление проводника, чем больший ток протекает по проводнику, тем быстрее и больше он нагревается. Вот так характеризует нагревание проводников электрическим током закон Джоуля-Ленца.
Отвод тепла от проводника и этапы нагрева
В связи с приведенным выше свойством, с нагревом проводников нужно бороться. Достигается это за счет выбора оптимального сечения провода, а также материала. То есть, сечение провода должно соответствовать максимально допустимому току, который может протекать в нем, а также нормально выдерживать кратковременные перегрузки.
Дабы все это правильно рассчитать, мы должны знать не только как закон Джоуля-Ленца нагревание проводников электрическим током рассчитывает, но и как посчитать отдачу тепла проводником. Ведь наш проводник находится не в вакууме, и отдает тепло окружающей среде.
Сразу давайте определимся, какие параметры влияют на теплоотдачу проводника. Прежде всего, это сечение проводника, ведь вполне логично, что чем большая площадь проводника соприкасается с окружающим воздухом, тем быстрее он ее отдает.
- Следующим важным критерием является так называемый коэффициент теплоотдачи материала, из которого выполнен проводник. Или как этот параметр еще называют — теплопроводность материала. Ведь ни для кого не секрет, что теплопроводность у материалов разная.
- Ну и последним параметром, является разность между температурой окружающей среды и материалом проводника. Ведь как говорит инструкция: чем больше этот перепад, тем быстрее материал отдает тепло.
Исходя из этих всех параметров, влияющих на теплоотдачу, можно предположить, что для любого проводника и любого тока имеется, так называемая, установившаяся температура. То есть, температура, при которой существует равенство получаемой энергии от протекания тока и отводимого тепла.
Такую температуру называют установившимся режимом. И она должна быть в пределах рабочей температуры провода. Рабочая температура провода обычно ограничена типом используемой изоляции.
Например, для ПВХ-изоляции она не должна превышать 70⁰С, а разнообразные материалы с пропиткой лаком способны выдерживать температуры до 120⁰С и выше.
Нагревание проводников электрическим током кратко — Помощник для школьников Спринт-Олимпиады
Одним из свойств электрического тока является нагрев проводников, по которым он протекает. Этот эффект был замечен многими исследователями, но его понимание пришло только выяснения механизма взаимодействия заряженных частиц с атомами и молекулами проводников. Нагрев приводит к выделению тепла и повышению температуры, а количество выделяемого тепла можно рассчитать с помощью формулы закона Джоуля-Ленца.
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца.
И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Профилактика нулевого подключения
Естественно, для того чтобы избежать всего вышеописанного желательно периодически осматривать места подключения проводников и при необходимости осуществлять их ревизию. Конечно работать с электрическими проводниками должен специалист – электрик.
Так, при выявлении места нагрева следует выполнить переподключение нулевого провода к шине. Для чего вначале следует обесточить место проведения работ и убедиться в отсутствии напряжения на выходе с автоматического выключателя и непосредственно на участке проведения работ.
Затем следует ослабить зажимные винты и отсоединить нулевой проводник от места подключения (обычно шина или винтовая клемма).
Далее нужно выполнить ревизию точек подключения, для чего в случае с алюминиевыми и моножильными проводниками нужно выполнить их зачистку от окислений, а при необходимости – произвести полную перезачистку провода.
В случае же с многожильными проводниками, их также желательно зачистить и качественно пролудить или же обжать специальной гильзой или кабельным наконечником.
В финале производится соединение проводника с точкой подключения в обратной последовательности.
Кстати, если возникает необходимость непосредственного соединения медных и алюминиевых участков, то этого допускать нельзя (высокое сопротивление переходного контакта), а как вариант применять алюмомедные наконечники или же делать соединение через хромированные шайбы (устанавливаются на шпильку между медью и алюминием).
Ну и конечно же следует защищать собственную электропроводку от подобных явлений при помощи специальных устройств типа УЗО, реле напряжения, автоматический выключатель с тепловым расцепителем. О чем мы уже неоднократно рассказывали на страницах нашего ресурса.
Видео по теме
Основные причины нагрева нулевого провода
Если рассматривать нагрев нулевого проводника чисто с физической точки зрения, то данный недочет, может быть вызван следующими факторами:
Плохой контакт в месте соединения
Учитывая, что в 90% случаев электрическая проводка в многоквартирных домах выполнена из алюминиевых проводников, становится ясно, почему возникает плохой контакт в месте соединения с нулевым проводом. Ведь в отличие от меди, на алюминии при коммутации с инородными материалами образуется оксидная пленка, которая в свою очередь ухудшает прохождение тока, ввиду уменьшения пятна контакта. Понятно, что подобный круговорот заканчивается существенным перегревом такого соединения.
Помимо этого, алюминий характеризуется хорошей пластичностью и даже после незначительных нагрузок, место соединения желательно периодически подтягивать, обеспечивая тем самым качественный контакт. Ну а если подобное условие игнорировать, то в течение непродолжительного периода времени место соединения ослабнет, и контакт ухудшится, провоцируя тем самым его нагрев.
Безусловно, медные проводники так же могут перегреваться (например, из-за неправильно подобранного сечения или плохой обтяжки контактов), но все же они менее подвержены подобным отклонениям.
Плюс ко всему, медь более прочный металл и даже при одинаковых условиях, медные проводники способны более длительно противостоять негативным воздействиям от перегрева (не так быстро отгорает как алюминий).
Превышение потребляемой нагрузки выше номинальной
Естественно, такая причина будет вызывать перегрев не только нулевых проводников, но и всей электропроводки. Ввиду чего не желательно подключать к непредназначенной для этого электросети мощные электропотребители (особенно одновременно).
Неплохим решением для разгрузки такой электропроводки будет поочередное включение в работу электропотребителей посредством программируемых реле времени или таймеров. Кстати с методикой подбора сечений для электропроводки можно ознакомиться здесь.
Также очень важно для предотвращения деформации проводников вследствие перегрузки применять точно рассчитанные устройства защиты (автоматические выключатели с тепловым расцепителем, УЗО, реле напряжения и т.п.)
Воздействие высших гармоник в электросети
Не вдаваясь в технические подробности, можно отметить, что с появлением современных электробытовых приборов, оснащенных импульсными источниками питания или имеющих реактивную нагрузку (микрволновки, светодиодные источники света, инверторные приводы) возникло такое негативное воздействие как появление высших гармоник в электросети. Причем, по словам специалистов, такие потребители способны повышать уровень тока в нулевом проводнике, даже выше тока в фазном проводнике. Ввиду чего расчет сечений электропроводки в таком случае следует производить с учетом подобных критериев.
Способы устранения проблемы
Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.
Бытовая техника
Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.
- Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.
Как устранить:
- Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
- Послабить контакты крепления проводов и достать провода.
- Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
- Окончательный этап – сборка крышки.
- Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.
Как устранить:
- Выкрутить 4 болта крепления верхней крышки клеммной коробки и снять саму крышку. Под ней размещена клеммная колодка, в которой выполнен прямой контакт входного провода и провода бытового прибора.
- Колодку следует открутить, достать провода и зачистить их, а также места крепления колодки. Для зачистки удобно использовать небольшой надфиль или мелкозернистую наждачную бумагу.
- После зачистки, кабели установить в клеммную колодку, затянуть болтами и поставить на своё место крышку.
- Если кабель греется по всей длине, а розетка рассчитана на допустимый ток бытового прибора, то причина только одна — низкое качество кабеля. Такой проводник следует заменить.
Электропроводка
Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.
Последовательность определения неисправности:
- Основной проблемой может быть место подключения силовых кабелей в квартирном щитке. Обычно входной кабель крепят к медной шине, от которой пойдут провода дальше в квартиру. Ослабленный контакт на шине приводит к постепенному нагреву кабеля, также возможно искрение. Достаточно зачистить провод и немного подтянуть контакты.
Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения
- Ещё одна причина повышения температуры проводника – слабый контакт на автоматическом выключателе или его неисправность. Высокий номинал автомата приводит к постепенному нагреву кабелей, оплавлению изоляции и его возгоранию. Достаточно включить несколько мощных бытовых приборов, например, стиральную машину и бойлер, при неработающем автомате, и результат не заставит себя долго ждать. Плохой контакт проводника и автоматического выключателя
- Распределительная коробка – одно из самых небезопасных мест электромонтажа. Одна недожатая скрутка приводит к сгоревшей изоляции и возможному короткому замыканию. Поэтому все соединения в распределительных коробках лучше выполнять, используя медные клеммники.
Почему греется вилка в розетке: неисправности с проводкой, устранение нагрева
Вилка в комплексе с розеткой представляет собой быстроразъемное контактное соединение. Таким образом подключают к сети практически любую современную технику. Этот способ надежен, прост и удобен, если все составляющие системы исправны. В противном случае вилка в розетке греется или возникают другие проблемы.
Перелом провода
Вилка или розетка будут перегреваться, если провод внутри переломлен. В месте перелома минимальное сечение провода, которого недостаточно для протекания тока заданной силы. Сопротивление увеличивается, а при увеличении сопротивления возникает нагрев электропроводки. К тому же перелом провода сопровождается микроскопическим искрением. Искры дополнительно разогревают поврежденное место.
Почему греется провод в электроприборах и удлинителях
Нагревание провода в электроприборах вызвано непропорциональным соотношением сечения провода и силы тока, который по нему протекает. Если провод тонкий, а прибор мощный, например, электрический чайник или электрообогреватель, тонкие жилы нагреваются. То же самое происходит, если устройство с кабелем достаточного диаметра подключается к розетке с помощью бытового удлинителя.
Греется розетка на стиральной машине
Если розетку часто вынимать и вставлять вилку, разъемы быстро выходят из строя
Если нагревается розетка, в которую подключается стиральная машинка, это явление может быть вызвано следующими причинами:
- Несоразмерная мощность подключенной к розетке машинки – на корпусе розетки указано, на какую мощность она рассчитана. Если цифры не совпадают, это неизбежно вызовет перегрев.
- Плохой контакт вилки с розеткой наблюдается при подключении вилки советского образца в евророзетку. Электроды советской вилки на миллиметр тоньше, а потому плотность контакта меньше.
- Неисправность самой розетки. Визуально можно диагностировать по наличию трещин, оплавленных участков.
- Слабые контактные лепестки розетки. Из-за неаккуратной эксплуатации зажимы могут ослабиться.
Ни одна из этих причин не устранится самостоятельно. Следует принимать меры по ее ликвидации.
Греется вилка водонагревателя
Нежелательно использовать переходники
Водонагреватель – это мощный прибор. Бойлер, к примеру, имеет мощность от 1,5 до 2,5 кВт, а его ампераж достигает 12 А. Если вилка, розетка или кабель нагреваются так, что к ним невозможно притронуться, возможные причины следующие:
- кабель имеет сечение менее 2,5 мм2;
- имеет место плохой контакт вилки в розетке;
- водонагреватель подключен через удлинитель;
- установлена некачественная или старого образца розетка.
Нагрев вилки бойлера допустим, но температура должна быть в пределах нормы. Горячий, но не обжигающий корпус без следов плавления – не повод для беспокойства.
Устранение нагрева
Зачистка контактов розетки
Ремонт электроприборов начинают с отключения подачи электричества, чтобы полностью обезопасить себя от удара током: отключают автомат или выворачивают пробки. Выкручивают винт в центральной части розетки, фиксирующий пластиковую крышку.
Производят внешний осмотр контактов и проводов. Если повреждения замечены, необходимо извлечь розетку из посадочного места, ослабив винты, которые ее удерживают.
Затем следует обрезать поврежденные провода, заново зачистить их, поместить в контактные зажимы и тщательно зажать.
Если заметны следы оплавления на пластиковом корпусе вокруг отверстий для электродов, скорее всего, имеет место плохой контакт электродов с лепестками контактов. Проблема решается путем поджатия лепестков плоскогубцами.
Если после произведенных манипуляций причина нагрева не устранена, вероятно, неисправна вилка электроприбора. Необходимо проверить контакты внутри нее. Причем это возможно только в том случае, если вилка разборная.
При визуальном осмотре будут заметны следы оплавления проводов внутри. Ремонт состоит в удалении поврежденного участка и повторном соединении провода с электродом при помощи винта. Монолитные вилки разборке не подлежат.
Когда греется розетка или вилка, делают незамедлительный ремонт или замену поврежденных элементов
Важно не допустить короткого замыкания и пожара, которые в таких ситуациях возникают внезапно
Чтобы обезопасить себя, необходимо соблюдать правила эксплуатации электроприборов, не превышать максимальную нагрузку на сеть и отказаться от использования удлинителей и тройников.
Электропроводка
Определить, что перегревается квартирная или офисная проводка можно не только по повышению температуры стены в месте, где она проходит, а и по характерному запаху гари. Он появляется от плавления пластиковой изоляции. Основные причины и методы устранения неполадки:
- Недостаточное сечение токопроводящих жил. Так бывает при ошибках, допущенных на этапе проектирования электромонтажных работ или в старых домах, проводка которых не была предусмотрена для современного уровня электропотребления. Возможные решения менять проводку или уменьшать количество одновременно работающих мощных приборов (например, не включать сразу чайник, утюг и кондиционер).
- Разные материалы жил кабеля. Соединять напрямую алюминиевые и медные жилы нельзя. В месте такой скрутки нагрев неизбежен, что опасно расплавлением изоляции, коротким замыканием и возгоранием. Материал проводки выбирается одинаковым для всех комнат дома/квартиры. Однако, при необходимости сделать соединение медных и алюминиевых жил, допустимо применить специальные клеммники производителя WAGO
- Плохой контакт в распределительной коробке или щитке. Ремонт выполняется зачисткой жил, новым соединением (скруткой или применением клемм для лучшего контакта).
- Ошибка при выборе устройства защитного отключения (УЗО) в щитке, который не срабатывает при неисправной электроцепи.
Понятие электрического сопротивления проводника
Классическое определение объясняет электрический ток движением «свободных» (валентных) электронов. Его обеспечивает созданное источником электрическое поле. Перемещение в металле затрудняют не только нормальные компоненты кристаллической решетки, но и дефектные участки, примеси, неоднородные области. В ходе столкновений с препятствиями за счет перехода импульса в тепловую энергию происходит повышение температуры.
Наглядный пример – нагрев воды кипятильником
В газах, электролитах и других материалах несколько отличная физика явления. Линейные зависимости наблюдаются в металлах и других проводниках. Базовые соотношения выражены известной формулой закона Ома:
R (электрическое сопротивление) = U (напряжение)/ I (сила тока).
Для удобства часто используют обратную величину, проводимость (G = 1/R). Она обозначает способность определенного материала пропускать ток с определенными потерями.
Для упрощения иногда применяют пример с водопроводом. Движущаяся жидкость – аналог тока. Давление – эквивалент напряжения. Уменьшением (увеличением) поперечного сечения или положением запорного устройства определяют условия перемещения. Подобным образом изменяют основные параметры электрических цепей с помощью сопротивления (R).
К сведению. Количество жидкости, проходящее за единицу времени через контрольное сечение трубы, – эквивалент электрической мощности.
Вывод
Мы очень надеемся, что теперь вы знаете, как можно объяснить нагревание проводника электрическим током, и понимаете сам процесс. Так же вы должны понимать, с чем связаны определенные ограничения при выборе сечения проводников, и не будет ли слишком велика цена игнорирования этих правил.
Ведь все из них основаны на реальных практических и научных обоснованиях, а электротехника очень жестоко наказывает тех, кто их игнорирует.
При прохождении по проводу электрического тока происходит преобразование электрической энергии в тепловую. Скорость процесса преобразования электрической энергии в тепловую характеризуется мощностью P=UI.
Количество тепла, выделяемого током в проводнике, пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока: Q = I 2 rt (Закон Джоуля-Ленца).
Преобразование электрической энергии в тепловую имеет большое практическое значение для создания ламп накаливания, нагревательных приборов и электрических печей. Однако выделение тепла в проводах и обмотках электрических, машин, трансформаторов, измерительных и других приборов не только бесполезная трата электрической энергии, но и процесс, который может принести к недопустимо высокому повышению температуры и к порче изоляции проводов и даже самих устройств.
Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.
В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается и окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.
По мере увеличения температуры провода растет разность температур провода и окружающей среду к увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловоз равновесие: за одинаковое время количество выделяющегося в. проводе тепла становится равным рассеивающемуся во внешнюю среду.
При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой .
Время нагревания до установившейся температуры неодинаково для различных проводников: нить лампы накаливания нагревается за доли секунды, электрическая машина – за несколько часов (как показывает анализ, теоретически время нагревания бесконечно велико, мы под временем нагревания будем понимать время, в течение которого провод нагревается до температуры, обличающемся от установившейся не более чем на 1%).
Для изолированных проводов нормами установлена предельная температура нагрева 55 – 100° С в зависимости от свойств изоляции и условий монтажа. Ток, при котором установившаяся температура соответствует нормам, называется предельно допустимым или номинальным током провода. Значение номинальных токов для различных сечений проводов приводится в специальных таблицах в ПУЭ и электротехнических справочниках.
Мощность, развиваемая током в проводе, при которой наступает тепловое равновесие к устанавливается допустимая температура, называется допустимой мощностью рассеивания .
Если по проводу проходит ток больше номинального, то провод оказывается «перегруженным». Однако, поскольку установившаяся температура достигается не сразу, кратковременно можно допустить в цепи ток больше номинального (до момента, пока температура провода не достигнет предельного значения). Слишком большая температура провода, как правило, получается при коротком замыкании.