Что такое светодиод (устройство, параметры, маркировка)

Какие цвета может излучать светодиод?

Многие заблуждаются в том, что светодиоды светят тем цветом, в который окрашен их корпус, хотя как мы уже говорили ранее, для регулировки цвета и регулировки его интенсивности нужно подбирать подходящий полупроводниковый материал. Именно он является определяющим фактором, если нужно подобрать цвет. Однако, светодиоды могут излучать не все цвета и есть точный спектр, который получить возможно.

Наиболее распространенные цвета – это красный, желтый, зеленый и оранжевый. Это все потому, что их легче производить, а соответственно и стоят они в разы дешевле ново появившихся синих и белых. Взгляните на эту таблицу, чтобы понять, какому напряжению соответствуют итоговые цвета:

Цвета, которые бывают у светодиодов

Давайте теперь подробно остановимся на конкретных материалах, которые влияют на выбор цвета:

  • арсенид галлия для получения инфракрасного (например, в пульте);
  • фосфид арсенида, чтобы получить оранжевый и весь спектр от красного и до инфракрасного;
  • фосфид арсенида галлия алюминия для ярко-красного, красно-оранжевого и даже желтого;
  • фосфид алюминия-галлия для зеленого;
  • фосфид галлия для желтого, зеленого и красного;
  • нитрид галлия, чтобы получить изумрудно-зеленый;
  • нитрид галлия-индия для бирюзового, синего и ближнего ультрафиолетового;
  • карбид кремния для синего;
  • селенид цинка и опять для синего;
  • нитрид алюминия-галлия для ультрафиолета.

Взглянув на этот список можно заметить, что для некоторых цветов подойдет сразу несколько полупроводников и это действительно так. Это уже сам производитель выбирает, какие полупроводники ему выбрать. Может быть, ему легче достать именно этот тип, а не другой, или он просто дешевле. Да, вот так много разных материалов нужно, чтобы создать даже очень простенький современный телевизор, например.

Историческая справка

Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:

  1. Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
  2. О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
  3. Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.

Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод  LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.

В нынешнем мире светодиоды встречаются повсеместно:

  • в наружном и внутреннем освещении светодиодными лампами и лентами;
  • как индикаторы для буквенно-цифровых табло;
  • в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
  • в светофорах и уличном освещении;
  • в дорожных знаках со светодиодным оснащением;
  • в USB-устройствах и игрушках;
  • в подсветке дисплеев телевизоров, мобильных устройств.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Несколько слов о COB-светодиодах, их отличия и особенности

Обычный светоизлучающий диод представляет собой полупроводниковое устройство, способное формировать оптическое излучение в момент, когда через него пропускается электрический ток. С другой стороны, светодиоды, выполненные по технологии COB (Chip On Board), появились значительно позже, но уже успели зарекомендовать себя, как надёжные устройства, пригодные для использования в различных осветительных приборах.

Когда были созданы мощные светодиоды SMD (Surface Mounting Device), приобрёл актуальность вопрос наращивания их светоотдачи с возможностью выработки рассеянного света. В процессе совершенствования светодиодов появилась концепция, в рамках которой предлагалось размещать на плату в едином корпусе несколько кристаллов. Дальнейшая деятельность разработчиков была связана с уменьшением размера кристаллов, а не с попытками увеличения их мощности.

В результате таких экспериментов исследователям и удалось получить COB-светодиод, имеющий одно основание, на плоскости которого размещено несколько маленьких чипов. Что касается используемой печатной платы, то в её основе имеется металлизированный слой. В целом же, печатная плата имеет три слоя:

  • металлизированное основание,
  • диэлектрическую прослойку,
  • токопроводящий слой.

Стоит отметить, что основание изготавливают из металла с хорошим показателем теплопроводности. Это говорит о том, что данный слой, помимо основной функции, выполняет роль радиатора, т.е. рассеивает вырабатываемое в процессе функционирования устройства тепло.

Кратко о производстве COB-светодиодов

Для объединения светодиодов с платой используется адгезив, после чего они соединяются между собой. В завершающей стадии изделие покрывается слоем люминофора. Такой подход позволяет производить COB-матрицы, формирующие луч рассеянного равномерного света без необходимости включения в конструкцию иных оптических изделий

Кроме того, технология делает возможным создание матриц практически любой формы по достаточно невысокой стоимости, что также немаловажно для производителей

Если рассматривать процесс подготовки COB-матрицы подробнее, то он начинается с нанесения тонкого слоя адгезива, делающего возможным соединение светодиодов за счёт поверхностного сцепления с основанием. Стоит отметить, что слой должен быть нанесён таким образом, чтобы обеспечить надёжное соединение LED-кристаллов и равномерный отвод тепловой энергии. Добиться этого удалось за счёт внедрения технологии магнетронного распыления, которая помогла получить первые экземпляры плат Multi Chip On Board, т.е. с многочисленными кристаллами на едином основании.

В дальнейшем на поверхности основы устанавливаются чипы, а затем поверхность подвергается очистке от любых посторонних частиц. На следующем этапе осуществляется электрическое соединение светодиодов, после чего остаётся лишь нанести люминофор.

Достоинства и недостатки COB-матриц

Что касается сильных сторон COB-матриц, то в первую очередь следует сказать о высокой универсальности. Производители могут создавать COB-матрицы любых размеров, дополняя их всеми необходимыми функциональными элементами. Это означает, что изделие такого типа может быть изготовлено для осветительного прибора любой формы. Кроме того, при необходимости можно с лёгкостью заменять элементы, вышедшие из строя в процессе эксплуатации.

Ещё одним плюсом является равномерный рассеянный свет, излучаемый COB-светодиодами. Благодаря этому предметы, освещаемые светильником или фонарём на COB-светодиодах, имеют выраженные светотеневые границы

Важно и то, что COB-матрицы имеют неплохие показатели светоотдачи. Так, в некоторых случаях эта характеристика достигает отметки в 165 лм/вт

Главным недостатком COB-матриц является их непригодность к ремонту. Это означает, что при выгорании хотя бы одного чипа придётся осуществлять замену всей матрицы целиком.

В качестве примера фонаря на COB-светодиодах можно рассмотреть Focusray 1062, о котором мы рассказывали недавно. Он неплохо защищён от внешнего воздействия, выдаёт рассеянный равномерный свет и отлично подойдёт для освещения участка во время отдыха в загородном доме или на даче, места туристической стоянки в походе и т.д.

Подводя итог можно сказать, что COB-светодиоды выглядят весьма перспективно. Несмотря на то, что сейчас они не слишком распространены, в будущем, вероятно, ситуация изменится в их пользу. Даже если они не найдут широкого применения в фонариках, то уж наверняка отлично подойдут для уличного освещения, ламп и некоторых других осветительных приборов.

Технология RGB

Принцип работы RGB-светодиода основывается на оптическом эффекте, позволяющем получить разнообразные цветовые оттенки в результате смешения трех основных компонентов палитры. На одной матрице установлены сразу три кристалла. Для адаптации к различным условиям существует несколько модификаций изделий. Они изготавливаются с общим катодом или анодом, а иногда и без таковых (с шестью основными выводами).

Чаще всего световая технология используется для оформления рекламных щитов, декорирования строений, обрамления мостов, памятников архитектуры и других конструкций. Принцип работы многоцветного светодиода идентичен. Однако конструктивные особенности увеличивают конечную стоимость изделий и усложняют схему подсоединения к электрической сети.

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым.  По этой причине они и делятся на холодные и теплые соответственно.

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

  • LED-диоды;
  • драйверы;
  • корпус;
  • радиатор;
  • цоколь.

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.

Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.

Как появилась специфическая светотехника?

Прежде чем рассмотреть принцип работы светодиодов, предлагается изучить информацию о том, каким образом они были созданы. Самое первое сообщение о возможности излучения света посредством твердотельного диода принадлежит одному британскому экспериментатору. Он сделал его еще в 1907 году, когда описал процесс электролюминесценции.

Эксперименты повторно проводились и в российской лаборатории, но тогда им не придали особого значения. В 1961 году первая светодиодная технология была запатентована сотрудниками американской компании. С тех пор процессы разработки совершенствовались. И через какое-то время удалось выпустить элемент высокой яркости для использования в телекоммуникационной сфере.

Получение светодиода определенного цвета

Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.

Покрытие люминофором

Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:

  • простота конструкции;
  • низкая стоимость производства;
  • экономия.

К недостаткам относятся:

  • снижение светоотдачи из-за потери световой энергии;
  • влияние на цветовую температуру;
  • быстрее стареет при эксплуатации.

Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.

RGB-технология

Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.

Преимущества:

  • возможность поочередного включения того или иного цвета вручную или автоматически;
  • можно вызывать разные оттенки, меняющиеся по времени;
  • создание эффектных осветительных конструкций для рекламы и дизайна.

Недостатки:

  • неравномерность светового пятна;
  • неравномерность нагрева и отвода тепла.

Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.

Применение различных примесей и полупроводников

Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.

Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении. 

По типу исполнения выделяют:

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.
    Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике. 

Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.
Smd
Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. 
Cob
Волоконные – разработка 2015 года. Могут использоваться в производстве одежды.
Волоконные
Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп

Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно

Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.
Filament
Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии.
Oled

В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов. 

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения. 

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света. 

Светодиоды типа COB

Подобные элементы начали использоваться для лампочек и фонарей с мощным светодиодом. Принцип работы изделий остается тем же, но к алюминиевой основе в данном случае крепятся десятки кристаллов при помощи диэлектрического клеевого состава. Полученная матрица обрабатывается одним слоем люминофора, в результате чего образуется световой источник с равномерным распределением основного потока.

Одной из разновидностей технологии является вариант с распределением большого количества кристаллов по стеклянной поверхности. По этой схеме изготавливаются филаментные лампы, у которых в качестве базового источника выступает центральный стержень из стекла, покрытый мелкими светодиодами и обработанный люминофором.

Светодиодные драйверы для ламп на основе конденсаторов

Обратимся к любой стандартной схеме светодиодной лампы, использующей такие «драйверы»

Схема общая и в ряде случаев ее постоянно модифицируют. Особенно любят китайские производители выкидывать оттуда что-нибудь.

Часто в дешевых лампах мы можем «наблюдать» пульсацию в 100 процентов. В этом случае можно даже не заглядывать внутрь лампы, чтобы утверждать об отсутствии одного из конденсаторов. А именно второго. Т.к. первый необходим для регулировки выходного тока. Его – то уж точно никуда не денут))).

Для тех, кто желает самостоятельно собирать такие драйвера, есть формулы, которые можно найти в сети. И по ним рассчитать номинал конденсатора.

Это можно отнести к большому плюсу такого вида драйвера. Ведь мощность лампы можно подогнать простым подбором конденсатора. Минусом стоит отметить отсутствие электробезопасности. Прикасаться к включенной лампе руками запрещено. Электротравма обеспечена.

Еще одним плюсом можно отметить 100 процентный КПД, ведь потери будут только на самих LEDs и сопротивлениях.

Огромный минус – пульсация. Она берется в результате выпрямления сетевого напряжения и составляет порядка 100 Гц. Согласно ГОСТ и САНпИН пульсация допустима от 10-20 процентов и то, в зависимости от того, в каком помещении установлен источник света. Уменьшить пульсацию можно подбором номинала конденсатора №2. Но все-равно Вы не получите полного отсутствия, а только не много сгладите всплески.

Это второй и главный минус такого типа драйверов. Как говорится: то что дешево – не всегда полезно. А пульсация очень вредна для здорового организма. Да и для не здорового))).

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Как устроены и чем отличаются светодиоды разных типов

Светодиоды можно классифицировать по разным критериям. Основное отличие – в технологии и электрических параметрах.

DIP

Сокращение DIP пошло от слов Direct In-line Package. Такие светодиоды известны еще с конца прошлого века. Устройство представляет собой стеклянную или пластиковую прозрачную колбу размером 3 или 5 мм, в которой находится полупроводниковый кристалл. Колба является линзой и формирует направленный пучок света. Кристалл закрепляется на катоде, который с помощью провода соединяется с анодом. Из корпуса выходят контакты в виде металлических ножек, через которые светодиод и включается в схему.

По форме бывают круглые, овальные, прямоугольные. Напряжение питания – до 5 В при 25 мА.

Обычно внутри линзы располагается один кристалл, но есть модели с двумя и более разных цветов. Такие модели могут оснащаться тремя и четырьмя выводами. Принцип работы светодиода подобного вида задает микрочип.

Dip светодиоды являются малоточными, они используются в гирляндах, для индикации, в подсветке, уличном освещении. По сравнению с SMD диодами они имеют следующие преимущества:

  • яркость;
  • направленный световой поток;
  • долгий срок службы при работе на улице;
  • потребление электроэнергии.

Основной недостаток – большой размер, от 3 мм.

SMD

Светодиоды SMD – это приборы для крепления на поверхность. В настоящее время этот тип диодов является самым востребованным. С их появлением расширились возможности создания осветительных систем. Начали уменьшаться размеры светильника, монтаж автоматизирован.

Как устроен светодиод SMD – излучающий кристалл закреплен на подложке, от которой отводится тепло. К ней вмонтированы выходы. Внутри размещен управляющий чип. Защитой является овальная или сферическая линза из стекла или пластика.

Преимущества SMD:

  • небольшая цена;
  • надежность;
  • срок службы;
  • высокая светоотдача.

SMD светодиоды в смеху включаются при помощи специального клея. Самые маленькие диоды имеют размер 0,6х0,3 мм. Максимальная яркость – 8000 кд/кв.м.

Существует технология, при которой кристалл наносится на проводящую подложку без использования корпуса. В качестве защиты используется специальный слой, который выбирается по назначению светодиодов.

Используются для подсветки интерьеров, уличных билбордов, рекламных экранов с широким разрешением.

COB

Chip On Board (COB) светодиоды имеют большое количество кристаллов на одной подложке. Также их называют светодиодной матрицей. Сверху заливается люминофором.

Основные преимущества:

  • простота монтажа;
  • хороший поток света;
  • высокий CRI;
  • разнообразие форм.

Недостатки:

  • стоимость;
  • самый срок службы;
  • светоотдача ниже, чем у SMD.

КОБы активно используются в создании ярких прожекторов и в других светильниках, где требуется акцентированная подсветка.

Как работает светодиод

Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.

Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.

При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.

Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.

Интенсивность света, излучаемого светодиодом, будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала.

В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.

Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала. Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector