Регулировка яркости светодиодов в автомобиле

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

В чем различия диммеров?

Если вы собрались использовать выключатель с регулировкой яркости, сперва нужно узнать какие они бывают. И вообще все ли светодиодные лампы можно диммировать?

Диммеры различаются по следующим критериям:

  • По типу монтажа;
  • по исполнению и способу управления;
  • по способу регулирования.

Давайте разберемся по подробнее с каждым из них.

По типу монтажа

Для наружного монтажа – накладной выключатель с диммером для светодиодных ламп. Для установки такого прибора не нужно высверливать в стене нишу, он просто крепится сверху на стену. Очень удобно использовать в тех случаях, когда интерьер не в приоритете или проложена наружная проводка.

Для внутреннего монтажа – отлично впишутся в любой интерьер, как например этот.

Для монтажа на DIN рейку весьма специфичны и сперва может показаться, что они не практичны. Однако этот регулятор освещения для светодиодных ламп работает с пультом дистанционного управления, при этом спрятан от посторонних глаз в электрощите.

По исполнению

По исполнению регулятор света для светодиодных и ламп накаливания может быть:

  • Поворотным;
  • поворотно-нажимного типа;
  • кнопочным;
  • сенсорным;

Поворотный – один из самых простых вариантов регулятора яркости светодиодной лампы, выглядит незатейливо обладает простейшим функционалом.

Поворотно-нажимной выглядит практически также, как и поворотный. Благодаря своей конструкции, при нажатии на него зажигается свет с такой яркостью, какая была установлена при последнем включении.

Кнопочный регулятор для светодиодного освещения выглядит уже более технологично и органично впишется в современную квартиру. Как например этот выключатель с регулятором яркости для светодиодных ламп.

Сенсорные модели и вовсе могут быть совершенно различны – начиная от светящихся кружочков, заканчивая ровными одноцветными панелями для регулировки напряжения светодиодных ламп.

По способу регулировки

Диммеры бывают разные не только по их исполнению, но и по принципу работы. Это касается именно диммеров переменного тока.

Первый тип диммеров более распространённый и дешевый, по причине простоты своей схемы – это диммер с отсечкой по переднему фронту (англ. leading edge). Немного дальше будет подробно рассмотрен его принцип работы и схема, для сравнения взгляните на вид напряжения на выходе такого регулятора.

По графику видно, что на нагрузку подается остаток полуволны, а её начало срезается. Из-за характера включения нагрузки, в электросетях наводятся помехи, что мешает работе телевизоров и других устройство. На лампу подаётся напряжение установленной амплитуды, а затем оно затухает, когда синусоида переходит через ноль.

Можно ли использовать leading edge диммер для диодных ламп? Можно. Светодиодные лампы с диммером этого типа будут хорошо поддаваться регулировке, только если они изначально для этого созданы. Об этом свидетельствуют символы на её упаковке. Они еще называются «диммируемые».

Второй тип работает иначе, создает меньше помех и лучше работает с разными лампочками – это диммер с отсечкой по заднему фронту (англ. falling edge).

Регулировка светодиодных ламп с диммерами такого типа происходит лучше, а его конструкция лучше поддерживает недиммируемые источники света. Единственный недостаток – эти лампы могут регулировать свою яркость не с «нуля», а в определенном диапазоне. При этом диммируемые светодиодные лампы – просто великолепно регулируются.

Отдельное слово можно сказать о готовых светодиодных светильниках с регулировкой яркости. Это отдельный класс осветительных устройств, которые не нуждаются в установке дополнительных регуляторов, а имеют его в своей конструкции. Их регулировки производятся с помощью кнопок на корпусе или с пульта.

Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.


Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.


Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).


Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.


Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Наверное многим хотелось добавить в свое авто что-то новое, сегодня я расскажу как сделать это без особых затрат и технических изменений в конструкции автомобиля. Устройство которое я сегодня хочу вам представить это не большая схема регулировки запуска и выключения нагрузки, в нашем случае осветительных приборов, освещения салона, подсветки приборной панели и т.д. Наше устройство позволит плавно включать и выключать любую из перечисленных нагрузок. Согласитесь куда приятнее когда при включении зажигания мы видим не резкое включение подсветки приборной панели, а плавный розжиг. То же можно сказать и о освещении салона и осветительных приборах.От слов перейдем к делу и перед тем как начать сборку предлагаю ознакомиться со схемой:

Для начала расскажу о том как она подключается. К VCC+ нам необходимо подвести постоянные 12 В от аккумулятора которые и будут питать нашу нагрузку. К REM мы подключаем те 12 В которые появляются после включения зажигания, именно они и будут инициировать розжиг и по их исчезновению схема будет гасить освещение. Соответственно к контактам LED+ LED- мы подключаем нашу нагрузку (в моем случае светодиоды) В качестве транзистора Т1 я использовал BC817 (аналог КТ503В) в качестве Т2 я взял IRF9540S. Если вы захотите увеличить время розжига вам необходимо увеличить номинал R2, для уменьшения соответственно понизить. Для управления временем гашения аналогичную операцию необходимо проделать с резистором R3. Теперь можно переходить к сборке. Для уменьшения размеров устройства я использовал поверхностный монтаж. Вот весь набор элементов, которые мне понадобились:

Платы были изготовлены по «ЛУТ» технологии из одностороннего текстолита.

Вот такое компактное устройство способное добавить эстетичности нашему автомобилю мы получили в итоге.

Расходы:1. Резисторы 0,25 руб\шт. х4 = 1 Руб2. BC817 = 3 руб.3. IRF9540S = 35 руб4. Конденсатор 8 руб 5. Клеммы 21,5

Итог: Всего за 70 руб. мы получаем довольно интересное устройство. P. S. Видео с работой устройства:

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение – до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем – около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc – сопротивление в килоомах (обычно от 75 до 1000 кОм).

Резистор включается между 8-ой ногой микросхемы и “землей” (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc – 22 = 25/0.24 – 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов – 3А, рабочее напряжение – 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема – это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А) 135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь) 360 руб/шт.
Транзисторы
40N06 11 руб/шт.
IRF7413 14 руб/шт.
IPD090N03L 14 руб/шт.
IRF7201 17 руб/шт.
50N06 12 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В) 15 руб/шт.
SS34 (3А, 40В) 90 коп/шт.
SS56 (5А, 60В) 3.5 руб/шт.

Особенности управления

Светодиодная лента — это осветительный прибор, изготовленный на основе гибкой платы, на которой через одинаковое расстояние смонтированы полупроводниковые светодиоды.

Особенность полупроводниковых диодов состоит в нелинейности их вольт-амперной характеристики. Это означает, что после некоторого значения даже небольшое изменение напряжения может вызвать резкий рост тока, протекающего через диод, и привести к выходу его из строя.

Поэтому для управления такими устройствами необходимо использовать источники стабильного тока.

Учитывая эти особенности, для обеспечения стабильности нельзя использовать обычную схему с ограничительным резистором большого номинала и источником напряжения с большой ЭДС, так как это приведет к тому, что на резисторе будет рассеиваться значительно большая мощность, чем необходимо для включения светодиода.

Для подключения должны использоваться источники, имеющие достаточно низкое напряжение и способные поддерживать стабильный ток. Для лент такие источники имеют вид отдельного блока питания с напряжением в 12/24 В и ограниченным током, а ограничительные резисторы монтируются на самой полосе.

Как выбрать усилитель для светодиодной ленты

На сегодняшний день все более популярной является подсветка светодиодными лентами. Такие ленты являются экономными и создают особенную атмосферу разноцветного или монохромного сияния.

При монтаже светодиодной ленты нужны блоки питания 12в. Если есть желания управлять лентой на расстоянии, используется светодиодный диммер, RGB лента управляется RGB контроллером. При сложных схемах подключения используется усилитель, который усиливает сигнал диммера или контроллера для управления светодиодной лентой.

Для понимания какой усилитель нужен для определенной схемы подсветки – рассмотрим некоторые разновидности. Для того чтобы купить усилитель, необходимо понимать подойдет ли он в схему подсветки.

Виды светодиодных усилителей:

RGB усилитель, используется для RGB светодиодных лент, также есть возможность для подключения монохромных светодиодных лент через один канал. RGB усилитель имеет на входе «input», и на выходе «output» обозначения каналов – «R» – красный цвет, «G» – зеленый цвет, «B» – синий цвет, «V+» – общий плюс подключения. Также предусмотрены контактные клеммы для питания 12V, которое обозначается как «Power» и может быть выполнено под разъем 5,5мм или же в виде зажимных контактов, или выведенных проводов.

Усилители для RGB светодиодных лент можно встретить разной мощности. Среди популярных выделяют на 12A, 18A, 24A, 30A, 36A. Они могут быть выполнены в пластиковом или алюминиевом корпусе, также можно встретить мини RGB усилители, которые выделяются своим не большим габаритным размером, и выполнены в виде плати, которая обтянута термоусадкой.

Монохромные усилители. Данные усилители предусмотрены для подключения монохромной ленты. На входе «input», и и на выходе «output» имеют обозначения «V+» и «V-», также контакты «Power» для подключения 12В от блока питания.

Для подключения светодиодной ленты 14,4 Вт на метр длинной 20 метров и RGB контроллером на 12А понадобится усилитель на 12А или же с запасом мощности на 18А. Почему именно так? Рассмотрим варианты подключения.

Какой длинны должна быть лента, чтобы управлять можно было ей с помощью RGB контроллера на 12А? Все достаточно просто, берем в расчет ленту RGB на 60 светодиодов, которая потребляет 14,4 Вт на метр. Соответственно, 12А (усилитель) умножаем на рабочее напряжение 12В и получаем 144 Вт, это показатель мощности усилителя. Теперь 144 Вт разделим на 14,4 Вт и получим 10 метров – максимально возможная длинна ленты для подключения к RGB контроллеру на 12А. Но, если светодиодной ленты для освещения нужно проложить 20 метров, а контроллера достаточно только на 10 метров, в схему включают RGB усилитель.

Какой же мощности он должен быть? Для правильного выбора RGB усилителя примем во внимания расчеты по RGB контроллеру, исходя из этого (10 метров х 14,4Вт / 12В рабочее напряжение) получим суммарный выходной ток 12А. Усилителя на 12А или 144Вт будет достаточно для подключения оставшихся 10 метров светодиодной ленты.

RGB усилитель на 12А имеет выходной ток по 4А на канал, исходя из этого, следует, что если подключать к этому усилителю монохромную ленту, то ее возможно подключить уже не 10 метров, а 3 метра, так как будет использоваться только один канал.

Применение светодиодных усилителей дает множество преимуществ, среди которых:

  • возможность подключения большого количества светодиодной ленты в одну схему;
  • значительное снижение нагрузки на контроллер;
  • возможность использование большое количество малогабаритных блоков питания, если это нужно при монтаже;
  • равномерное управления светодиодными лентами.

К недостаткам отнести можно только одно, это то что в данных схемах подключения используется много компонентов. Но в ситуациях, когда монтаж возможен только с усилителями, это не недостаток, а хорошее решение применения осветительной системы.

Покупай выгодно в Foton.ua.

В нашем интернет магазине Вы можете не только купить RGB усилители для светодиодных лент RGB, также можете купить монохромные усилители для одноцветных светодиодных лент. Менеджеры помогут подобрать необходимое оборудование для Вашей схемы освещения но низким ценам и высоком качестве. Доставим по всей территории Украины (Киев, Харьков, Львов, Днепр, Одеса).

Посмотреть все вопросы данной категории

На микросхеме

Для регулирования мощностью, подаваемой на нагрузку в цепях постоянного тока 12 Вольт, часто используют интегральные стабилизаторы — КРЕНки. Применение микросхемы упрощает разработку и монтаж устройств за счет малого числа радиодеталей. Такой самодельный диммер прост в настройке и обладает некоторыми функциями защиты.

С помощью переменного резистора R2 создается опорное напряжение на управляющем электроде микросхемы. В зависимости от выставленного параметра регулируется значение на выходе от максимума в 12 В до минимума в десятые доли Вольта. Недостаток данных регуляторов в малом КПД и максимально возможной мощности подключаемой нагрузки, в следствие этого, есть необходимость установки дополнительного радиатора для хорошего охлаждения КРЕН, поскольку часть энергии выделяется на нем в виде тепла. Однако, это идеальный вариант для маломощных схем постоянного тока и низкого напряжения, за счет своей простоты и универсальности.

Данный регулятор освещения был повторен мной и отлично справлялся со светодиодной лентой 12 Вольт, длиною три метра и давал возможность регулировать яркость светодиодов от ноля до максимума.

Отличный вариант — диммер на интегральном таймере 555, который управляет силовым ключом КТ819Г, короткими ШИМ импульсами. Установив высокую частоту работы схемы, можно избавиться от мерцания, которое часто возникает из-за дешевых покупных диммеров и вызывает быструю усталость и раздражение глаз у человека.

В таком режиме транзистор пребывает в двух состояниях: полностью открыт или полностью закрыт. Падение напряжения на нем минимальны, что позволяет подключать более мощную нагрузку и использовать схему с малым радиатором, что по сравнению с предыдущей схемой с регулятором на КРЕН, выгодно отличается по габаритам и экономичности.

Напоследок рекомендуем просмотреть еще один мастер-класс, в котором показано, как можно сделать регулятор освещения для светодиодов:

Изготовление регулятора света на 12 Вольт

Вот собственно и все идеи сборки простого светорегулятора в домашних условиях. Теперь вы знаете, как сделать диммер своими руками на 220 и 12В.

Будет интересно прочитать:

  • Светодиодный прожектор своими руками
  • Ремонт диммера в домашних условиях
  • Как меньше платить за свет

Способы регулировки яркости светодиодной ленты

Самый простой способ управлять яркостью осветительного прибора – включить последовательно с ним переменный резистор. Он будет перераспределять падение напряжения между ним и лентой, тем самым регулируя ток через элементы. Этот способ дешев и прост, но на потенциометре бесполезно рассеивается большое количество мощности.

Другой метод – установка автотрансформатора со стороны 220 В блока питания. Этот трансформатор громоздок, дорог и ненадежен.


Неэффективные методы изменения яркости.

Самый распространенный способ регулирования интенсивности свечения – применение специальных приборов – диммеров. Они регулируют средний ток через светодиоды путем регулировки среднего напряжения методом широтно-импульсной модуляции (ШИМ).


Принцип регулирования методом ШИМ.

Особенностью такого пути является отсутствие перераспределения мощности между ключевым элементом и нагрузкой – энергия подается дозированными порциями. Яркость усредняется за счет инерционности человеческого зрения.

Управление низковольтными лентами

Импульсное напряжение для светильников 12..36 вольт, промодулированное по ширине импульса, формируется с помощью микросхем. Для диммеров с ручным управлением применяются таймеры. Например, широко распространенная микросхема 555

С ее помощью генерируется последовательность импульсов, скважность которых можно регулировать потенциометром. Импульсы управляют мощным ключом на полевом транзисторе, который регулирует средний ток через светодиодную ленту

Схема диммера на таймере 555.

Если светорегулятор предполагает более высокий уровень сервиса, регулятор среднего тока строят на микроконтроллере или специализированной микросхеме. Так выполняют устройства с дистанционным управлением или адаптивной подсветкой, изменяющейся в зависимости от окружающего освещения.


Подключение регулятора освещения для низковольтных приборов.

Рабочее напряжение для распространенных типов осветительных устройств указано в таблице.

Тип прибора RT-5000 3528 RT-5000 2×3528 ULTRA-5000 5630 ULTRA-5000 2×5630 RS-5000 335 RS-5000 2×335
Напряжение питания, В 12 12, 24, 36 12 24 12 12, 24

Регулирование яркости лент на 220 В

В основу диммирования LED-оборудования, питающегося от сети 220 В положены те же принципы, но реализация несколько другая. В качестве управляющих ключей используются более мощные и высоковольтные элементы, включая симисторы.


Схема светорегулятора на 220 В.

Подключение такого диммера к светодиодной ленте и регулирование производится до выпрямления. Схема управления «нарезает» куски синусоиды нужной ширины, формируя среднее напряжение. Потом оно выпрямляется, фильтруется (усреднение происходит в фильтре, поэтому дополнительных мер к снижению мерцания применять не надо) и подается на LED-ленту.


Подключение регулятора освещения для LED-осветителя на 220 В.

Основные выводы

Регулятор яркости для светодиодной ленты является практичным и полезным прибором, расширяющим возможности подсветки. Он универсален, подходит ко всем лентам с одинаковыми параметрами. Подключение прибора не составляет существенных затруднений:

  • присоединение к источнику питания (для многоцветных лент — к выходу контроллера);
  • подключение выхода диммера к соответствующим контактам светодиодной ленты;
  • проверка полярности и правильности соединений;
  • пробное подключение подсветки.

СветодиодыНазначение и схема блока питания для светодиодной ленты 12 В

СветодиодыПочему греется светодиодная лента: основные причины и способы устранения

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector