Простой электронный термостат для холодильника на lm35. схема и описание

Контроль в помещениях

Типовая схема терморегулятора для погреба.

Приборы обозначаются латинскими буквами и цифрами. Например, LM135. Чтобы не ошибиться в выборе, запомните: 1 — применение в военной технике, 2 — применение в производственных аппаратах и устройствах, 3 — применение в бытовых приборах. Российским аналогом является обозначение транзисторов — 2Т (военный) и КТ (массовый). Принцип действия такого датчика таков: при повышении температуры увеличивается напряжение стабилизации, то есть это стабилитрон. Удостовериться в правильности выбора можно, почитав технические характеристики прибора. Точка калибровки указана в кельвинах. Температурная шкала указана в градусах по Цельсию.

Вспоминая школьный курс физики, переводите 0С= 0+273=273К. Рабочий диапазон датчика от -40 до 100°C. Если используется такой датчик, нет нужды в сомнительных опытах. Достаточно рассчитать напряжение на выходе стабилитрона, а затем это значение указать задающим на входе компаратора (сравнивающего устройства). Температурный сенсор LM335 стоит недорого — порядка 35-40 рублей. Взяв за основу этот термодатчик, нарисуйте схему терморегулятора для погреба.

Принципиальная электрическая схема терморегулятора.

На практике она дополнится выходным устройством для включения нагревателя, блоком питания и индикатором работы.

Следующий важный элемент — компаратор, например LM311. Он имеет два входа — прямой (2), обозначенный «+», и инверсный (3), обозначенный «-», и один выход. На схеме выход компаратора обозначен цифрой 7. Работает это устройство так: напряжение на входе 2 больше, чем на входе 3, на выходе получаем высокий уровень. Транзистор открылся, подключил нагрузку. Потенциометр, подключенный к прямому входу, устанавливает температуру — задает порог срабатывания компаратора. При обратной ситуации (напряжение на входе 2 меньше, чем на входе 3), на выходе уровень понижается. Повышается температура, срабатывает термореле, компаратор переходит на низкий уровень, транзистор закрывается, ТЭН выключается. Этот цикл повторяется беспрерывно.

Простой электронный терморегулятор своими руками. Предлагаю способ изготовления самодельного терморегулятора для поддержания комфортной температуры в помещении в холодное время. Термостат позволяет коммутировать мощность до 3,6 кВт. Самая важная часть любой радиолюбительской конструкции это корпус. Красивый и надежный корпус позволит обеспечить длительную жизнь любому самодельному устройству. В показанном ниже варианте терморегулятора применен удобный малогабаритный корпус и вся силовая электроника от продаваемого в магазинах электронного таймера. Самодельная электронная часть построена на микросхеме компараторе LM311.

Схема термостата

Предлагаемый проверенный и неплохо себя зарекомендовавший термостат работает в диапазоне 0 – 100°С. Он осуществляет электронный контроль температуры, коммутируя нагрузку через реле. Схема собрана с использованием доступных микросхем LM35 (датчик температуры), LM358 и TL431.

Детали для устройства

  • IC1: LM35DZ температурный датчик 
  • IC2: TL431 прецизионный источник опорного напряжения 
  • IC3: двойной однополярный ОУ LM358. 
  • LED1: 5 мм светодиод
  • В1: PNP транзистор A1015
  • Д1 – Д4: 1n4148 и 1N400x кремниевые диоды
  • ZD1: стабилитрон на 13 В, 400 мВт
  • Подстроечный резистор 2.2 к
  • Р1 – 10к 
  • R2 – 4,7 М
  • Р3 – 1.2 К
  • Р4 – 1к
  • Р5 – 1к
  • Р6 – 33 Ом
  • С1 – 0.1 мкф керамический
  • С2 – 470 мкФ электролитический
  • Реле на 12 В постоянного тока однополюсное двухпозиционное 400 Ω или выше

Устройство выполняет простой, но очень точный тепловой контроль тока, которая может использоваться там, где необходим автоматический контроль температуры.

Схема переключает реле в зависимости от температуры, определяемой однокристальным датчиком LM35DZ. Когда LM35DZ обнаруживает температуру выше, чем заданный уровень (установленный регулятором), реле срабатывает. Когда температура падает ниже заданной температуры – реле обесточивается.

Таким образом и удерживается нужное значение инкубатора, термостата, системы подогрева дома и так далее. Схема может питаться от любого источника переменного или постоянного тока 12 В, или от автономного аккумулятора. Существует несколько версий датчика температуры LM35:

  • LM35CZ и LM35CAZ (в to-92 корпусе) − 40 – +110C
  • LM35DZ (в to-92 корпус) 0 – 100с. 
  • LM35H и LM35AH (в-46 корпус) − 55 – +150C

Принцип работы

Как работает терморегулятор. Основой схемы является температурный датчик, который представляет собой преобразователь градусы – вольты. Выходное напряжение (на выводе 2) линейно изменяется вместе с температурой от 0 В (при нуле) до 1000 мВ (при 100 градусах).

Это значительно упрощает расчет цепи, так как нам нужно только обеспечить прецизионный источник опорного напряжения (TL431) и точный компаратор (А1 LM358) с целью построения полной тепловой управляемости коммутатором. Регулятор и резистор задают опорное напряжение (vref) 0 – 1.62 В.

Компаратор (А1) сравнивает опорное напряжение vref от (установленного регулятором) с выходным напряжением LM35DZ и решает, следует ли включить или выключить питание реле. Цель резистора R2 создать гистерезис, который помогает предотвратить дребезг реле.

Гистерезис обратно пропорционален значению R2.

Настройка

Никаких специальных приборов требуется. Например, чтобы установить 70С срабатывания подключите цифровой вольтметр или мультиметр через тестовые точки “ТР1” и “масса”. Отрегулируйте vr1, пока не получите точное значение 0,7 В на вольтметре. Другой вариант схемы, с использованием микроконтроллера, смотрите здесь.

5 Двухзонные термостаты

Устройство запрограммировано на изменение температурного режима в диапазоне от 7 до 30° C. Вносить изменение в настройку можно через 0,5° C. Такие приборы устанавливаются на всех видах систем отопления, в качестве терморегулятора воды.

Они не зависят от вида котлового оборудования и могут работать как с твердотопливными обогревателями, так и с электрическими или газовыми. Конструкция состоит из нескольких элементов:

  • программируемого реле;
  • датчика температуры.

Для избегания искажения передаваемых данных, датчики устанавливаются в места, защищенные от сквозняков и прямых солнечных лучей. Также существуют двухступенчатые регуляторы, которые применяются в кондиционерах, где происходит управление охлаждением и нагревом воздуха. Отличаются они наличием двойного контакта, с помощью которого происходит переключение между электрическими схемами.

Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.

Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.

Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:

Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.

Вторым распространенным датчиком температуры является DS1820:

зачастую они продаются в таком виде:

Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.

Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.

Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10

Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.

Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.

Минус этого метода в большой инерционности полученного датчика.

2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:

Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:

Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):

Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком

Советуем изучить Помещения по степени опасности поражения электрическим током

Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.

Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:

Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:

А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:

Ну и картинка общей проверки работоспособности электрической части:

Виды терморегуляторов и принципы работы

Терморегуляторы разделяют на два вида:

Главное достоинство механических приборов — невысокая стоимость, простота в эксплуатации, четкость и слаженность в работе. Во время их эксплуатации нет необходимости использовать дополнительные источники энергии.

Модификация позволяет в ручном режиме регулировать количество теплоносителя, поступающего в радиатор, тем самым контролируя теплоотдачу батарей. Прибор отличается высокой точностью регулировки степени нагрева.

Существенный недостаток конструкции заключается в том, что в ней отсутствует разметка для регулировки, поэтому производить настройку агрегата придется исключительно опытным путем. С одним из методов балансировки мы ознакомимся ниже

Основные элементы регулятора механического типа — термостат и термостатический клапан

Механический терморегулятор состоит из следующих элементов:

  • регулятора;
  • привода;
  • сильфона, заполненного газом или жидкостью;

Вещество, содержащееся в сильфоне, играет ключевую роль. Как только положение рычага термостата меняется, вещество перемещается в золотник, тем самым регулируя положение штока. Шток под действием элемента частично перекрывает проход, ограничивая попадание теплоносителя в батарею.

Электронные термостаты — более сложные конструкции, в основе которого лежит программируемый микропроцессор. С его помощью можно задавать определенную температуру в комнате путем нажатия нескольких кнопок на регуляторе. Некоторые модели многофункциональны, пригодны для управления котлом, насосом, смесителем.

Строение, принцип работы электронного прибора практически не отличается от механического аналога. Здесь термостатический элемент (сильфон) имеет форму цилиндра, его стенки гофрированы. Он заполнен веществом, которое реагирует на колебания температуры воздуха в жилище.

По время повышения температуры происходит расширение вещества, в результате чего на стенки образуется давление, что способствует движению штока, который автоматически закрывает клапан. При движении штока проводимость клапана увеличивается или уменьшается. Если температура снижается, то рабочее вещество сжимается, в результате сильфон не растягивается, а клапан открывается, и наоборот.

Сильфон обладают высокой прочность, большим рабочим ресурсом, выдерживают сотни тысяч сжатий на протяжении нескольких десятков лет.

Основной элемент электронного регулятора — термодатчик. В его функции входит передача информации о температуре окружающей среды, в результате чего система генерирует необходимое количество тепла

Электронные терморегуляторые условно разделяют на:

  • Закрытые терморегуляторы для радиаторов отопления не обладают функцией автоматического определения температуры, поэтому они настраиваются в ручном режиме. Отрегулировать возможно температуру, которая будет поддерживаться в комнате, и допустимые колебания температуры.
  • Открытые термостаты можно запрограммировать. Например, при понижении температуры на несколько градусов режим работы может измениться. Также возможно настроить время срабатывания того или иного режима, отрегулировать таймер. Используются такие приборы преимущественно в промышленности.

Электронные регуляторы работают от батареек или специального аккумулятора, который идет в комплекте с зарядкой.

Полуэлектронные регуляторы идеально подходят для бытовых целей. Они идут с цифровых дисплеем, который отображает температуру помещения.

Принцип действия полуэлектронных устройств для регулировки теплоотдачи радиатором позаимствован из механических моделей, поэтому его регулировка осуществляется вручную

Отрегулировать работу терморегулятора можно самостоятельно

После замены регулятора температуры или в процессе долгой эксплуатации в работе холодильника могут произойти незначительные изменения. Причин может быть несколько, но чаще всего это не до конца отрегулированный терморегулятор. Как это исправить?

Настройка терморегулятора холодильника — процесс трудоемкий и длительный. Затраченное время зависит от длительности циклов межу включением и отключением этого устройства. Если время ограничено, отладить терморегулятор можно с помощью замеров температуры в морозильной или холодильной камере. В этом случае нет необходимой поправки на температуру окружающей среды.

Датчик для температуры воздуха

Данное устройство предназначено для измерения теплового режима внутри закрытого пространства.

Как сделать датчик температуры воздуха твоими руками? Для сооружения данной микросхемы необходимо иметь четкое представление готового результата.

Для работы понадобятся следующие детали и инструменты:

  • Датчик марки lm 335. Он имеет некоторые сходство с транзистором, у которого 3 металлические ножки;
  • Подстроечный резистор R2-10Kom. Его используют для правильной калибровки, которая обеспечит точность в работе датчика;
  • Микросхема. Схема датчика температуры своими руками поможет правильно соединить все детали между собой. На плате металлической разметкой расположены места соединения для каждого типа детали;
  • Пинцет;
  • Паяльник;
  • Защитные очки для глаз.

Приступаем к сборке. Этого транзистор фиксируем на микросхеме. Горячим паяльником соединяет металлические ножки в точках. Далее аккуратно паяем его калибровщик. Наше изделие готово.

Автоматическая регулировка температуры отопления. Электронные термостаты и сервоприводы.

Автоматизировать контроль температуры системы отопления
более точно можно с помощью электронных термостатов и сервоприводов. В отличии от термостатических кранов с термоголовкой, электронные термостаты не привязаны к конкретному месту установки. Это позволяет повысить точность измерений, что убирает фактор влияния тепла радиатора отопления. Реакция такого регулятора температуры намного быстрее. А расширенные возможности электронных термостатов позволяют забыть про периодическую ручную подстройку температуры в помещении. Вы ощутите комфорт в эксплуатации хронотермостатов. Использование термических сервоприводов увеличит скорость реакции радиаторов и системы отопления. Это избавит помещение от «температурных провалов«, что является недостатком термоголовок. Одним словом термоголовки
занимают нишу «полуавтоматического регулирования температуры отопления«, а электронные хронотермостаты занимают нишу «автоматического регулирования температуры отопления«. Благодаря высокой точности измерений электронных термостатов и быстрой реакции термических сервоприводов такая система автоматической температуры отоплениястановится намного экономичнее, так как температура в помещении практически не колеблется — погрешность составляет 1,5-2 градуса Цельсия. А это высокий результат, например у термоголовки средняя погрешность 5-10 градусов Цельсия. Хронотермостаты имеют настолько широкий спектр возможностей, что экономия отопления увеличится на 10-15% точно, а то и выше. Высокая экономичность автоматической регулировки температуры дома, квартиры, предприятия — это существенный результат.

Принцип работы

Суть проста – небольшой датчик заранее программируется человеком на поддержание определенной температуры воздуха. Когда обогреватель нагревает воздушные массы до заданного показателя, то он автоматически отключается. Когда же температура в комнате падает, прибор вновь начинает работать. Использование таких терморегуляторов позволяет всегда поддерживать оптимальную температуру не только в жилых комнатах, но и на складах, в подвалах и во многих других помещениях.

К тому же некоторые модели термостатов можно программировать не только на поддержание определенной температуры воздуха в комнате, но и задавать часы включения и выключения устройства. Это позволяет прогревать комнату к определенному времени – например, к началу рабочего дня или, наоборот, к приходу домой. Терморегуляторы – это нужные и важные устройства для тех, кто ценит не только максимально комфортные условия в помещениях, но и прежде всего переживает за безопасность использования электрообогревателей.

Подключение термостата к котлу: инструкция

Для получения точных результатов измерения, важно правильно выбрать место монтажа:

  • не рекомендуется установка рядом с окнами, входными дверьми, каналами вентиляции, климатической техникой и другими объектами, способными повлиять на температуру воздуха в месте монтажа;
  • не рекомендуется установка слишком высоко, у потолка, или слишком низко к полу, поскольку нагретые воздушные массы концентрируются у потолка, а при отсутствии теплого пола, температура в нижней плоскости помещения заметно ниже. Оптимальная высота установки – 1,5 метра от уровня пола;
  • не рекомендуется монтаж рядом с движущимися или создающими механические удары объектами (двери, прикасающаяся к стене мебель);

Алгоритм подключения и монтажа всегда указан в инструкции к прибору. Для примера рассмотрим как установить механический Cewal RQ-10:

Фото Описание процесса
Снимаем вращатель регулировки температуры
Сняв лицевую панель, откручиваем соответствующие винты
Производим монтаж конструкции на стену через соответствующие отверстия, указанные в инструкции
Согласно схеме из инструкции, произведите подключение контактов. Для модели Cewal RQ-10 эта схема указана на фото.
Дополнительно. Между контактами «TA» платы некоторых котлов может быть перемычка, ее необходимо заменить  на двужильный изолированный кабель сечением проводника 0,5-0,75 мм2.

Большинство современных термостатов питается от батареек типа АА, но если необходимо питание от электросети, схема его организации выглядит таким образом:

Все современные модели терморегуляторов имеют в комплекте инструкцию с подробным, схематическим описанием алгоритма установки, подключения и настройки. Однако для этого в любом случае нужны базовые навыки работы с электрикой.

Обзор терморегуляторов на рынке

Терморегулятор IWarm 710

К числу наиболее популярных моделей на сегодняшний день относятся E 51.716 и IWarm 710. Их негорючий, выполненный из пластполимера корпус имеет небольшие размеры, но большое число полезных задач и встроенный аккумулятор. Имеет довольно большой встроенный дисплей, который отображает соответствующие температурные характеристики.

Стоимость этих моделей представлена в пределах 2700 тыс. рублей.

К особенностям E 51.716 можно отнести то, что он имеет кабель длиной в 3 м, способен балансировать температуру одновременно от самого пола, и то, что прибор может встраиваться в стену в любом положении.

Единственное о чём следует подумать перед его монтажом, как именно он будет располагаться, чтобы кнопки переключения не закрывались посторонними предметами, и были легко доступны.

К недостаткам терморегулятора относится незначительных набор функций, однако аналогичные приборы выполняют их довольно легко. В эксплуатации это может вызвать дискомфорт. Также, в памяти E 51.716 и IWarm 710 нет функции автоматического нагревания, поэтому это придётся делать самостоятельно.

Электронные регуляторы с механическим принципом работы:

  1. Регулирование работы основано на автоматике, и осуществляются при помощи кнопок, расположенных на панели.
  2. Включают в себя дисплей, на котором обозначается прежние и заданные градусы.
  3. Есть возможность настраивать прибор самостоятельно: число, время работы, цикличность подогрева с сохранением конкретного режима, также можно указывать степень нагрева.
  4. В сравнении с механическими аналогами, температура электрических моделей легко регулируется приблизительно на 0,5 значений.

На покупку такой модели уйдёт не более 4 тысяч.

Электронные комплектации:

  1. Самостоятельно управляют температурой.
  2. Всего один прибор может контролировать атмосферу на несколько дней вперёд и отдельно для каждой комнаты.
  3. Позволяют устанавливать режим «отсутствие», и не затрачивать на это лишние средства, если никого нет дома.
  4. Система автоматически анализирует качество работы устройства в каждой комнате. Владельцу не придётся догадываться о возможных неисправностях в работе, так как все недочёты система выдаст самостоятельно.
  5. Производители дорогих моделей предусмотрели возможность управления режимами, находясь далеко от дома. Регулировка осуществляется при помощи встроенного Wi-Fi роутера.

Стоимость подобных аппаратов зависит от набора встроенных функций, поэтому варьируется от 6000 до 10000 тыс. рублей и выше.

Полная проверка датчика

Для нее Вам понадобится, опять же, мультиметр и термометр, который можно погружать в воду и показывающий до 100°C. Порядок выполнения:

  1. Подсоединяете к контактам датчика провода мультиметра.
  2. Опускаете проверяемую деталь и градусник в емкость с водой.
  3. Нагреваете воду, отслеживая температуру и показания мультиметра.

Проверка датчика температуры охлаждающей жидкости

Как Вы уже видели из таблицы, сопротивление датчика меняется от температуры. Если они соответствуют таблице – он в порядке. При изменении значений сопротивления не должно быть резких скачков – это тоже признак неисправности. Если у Вас нет подходящего термометра, можно проводить проверку только при кипящей воде, то есть при 100°C. Сопротивление в таком случае приблизительно должно быть равно 180 Ом.

Система регулирования отопления А создана для решения следующих проблем

  • • неэффективное использование энергоресурсов в зданиях медучреждений, гостиницах, административных центрах и пр.,и ,как следствие, отсутствие функции экономии;
  • • изменение температуры в помещении всего на 1 C˚ увеличивает теплопотребление на 5%;
  • • создание неблагоприятных условий проживания в помещениях;
  • • не выполнение требований законодательства по температурным нормам;
  • • меньший срок службы оборудования, за счет повышенной нагрузки;
  • • увеличенные затраты при децентрализованном управлении.

Как работает система

Термоэлектрический привод (1) регулирует подачу горячей воды в радиаторе. Он подключается к комнатному коммуникатору-регулятору (2). Комнатный коммуникатор-регулятор имеет встроенный датчик температуры и влажности (+ можно подключить до 3-х выносных датчиков), отображает текущую температуру в помещении и управляет термоэлектрическим приводом* для поддержания заданного температурного режима. В него встроен радиотерминал «ZETA», который обеспечивает беспроводную передачу данных в диспетчерский пункт управления отоплением.

*Один коммуникатор-регулятор обеспечивает управление до четырех термоэлектрических приводов.

(1)     (2) 

Особенности системы регулирования отопления «А+»

Централизованное управление отоплением

Централизованное дистанционное управление отоплением всего здания с одной точки, учитывая состояние и работу каждого из устройств. Возможность управления до 65 тыс. точек регулирования отопления.

Беспроводная

Обмен информацией между устройствами по радиоканалу, работающему на нелицензируемых радиочастотах и сверхнизких мощностях. Самоорганизующаяся сетьс ретрансляцией сигнала.

Управление системой с мобильного устройства/планшета

Возможность управления с помощью Wi-Fi посредством мобильных устройств (телефон, планшет) для индивидуальной настройки температуры потребителем в конкретном месте.

Простой монтаж, быстрый старт

Не требует штробления стен, нет пыли и грязи. Легкое внедрение системы в уже функционирующее здание с законченным ремонтом. Система легко программируема, позволяет выбор оснащения в соответствии с индивидуальными требованиями и пожеланиями заказчика.

Низкие сроки окупаемости

Экономический эффект заметен уже после месяца работы системы. Срок окупаемости всей системы от 2х до 3х летпри текущей стоимости энергоресурсов.

Интеллектуальная

Автоматический анализ и оптимальное управление мощностью отопительных приборов с учетом заданных параметров. Самообучаемость , система адаптируется под условия эксплуатации: типы помещений, мощность отопительных приборов, условия окружающей среды.

Заданное расписание

Индивидуальное программирование.Возможность задавать температурную программупо часам и в зависимости от дня неделив каждом отдельном помещении.

Регулирование онлайн

Круглосуточное удаленное регулирование температуры.Контроль работоспособности системы.Система контроля и предупреждения аварий.

Эффективная

Автоматическое регулирование отопленияв здании — реальная экономия затратна теплоресурсы до 30-40%.

Технические характеристики:

  • • Микропроцессорное управление (автономная работа по внутреннему алгоритму, адаптивность и самообучаемость)
  • • Встроенный WI-FI модуль для управления посредством мобильных устройств
  • • Встроенный радиоканал 868 МГц для связи с центральным пультом управления
  • • Второй встроенный радиоканал 433/868 МГц для связи с внутренними блоками управления (выносные температурные датчики, выносной беспроводной пульт управления, датчик открытия окна, беспроводные комнатные терморегуляторы)
  • • Измерение и индикация температуры и влажности в помещении
  • • Управление до 4-х исполнительных механизмов (термоприводы радиаторов отопления, электроотопительные приборы,теплый пол и т.д.)
  • • Напряжение питания 24V DC или 230В AC
  • • Четыре выходных канала 24V DC c суммарной мощностью до 35Вт для питания термоприводов

Высокотемпературный градусник

Для тех случаев, когда требуется измерение температуры свыше пределов «выживания» терморезистора, используется термопара. Ее функциональность сохраняется и при 600 градусах Цельсия. Подобный определитель нагрева среды может быть полезен не только на производстве, но и дома. К примеру, определять температуру работы духовки или текущую на жале паяльника.

Схема

Термопара генерирует микроскопический ток, малым напряжением и силой. Для преобразования полученных характеристик, в понятный микроконтроллеру вид, используется шилд Ардуино с микросхемой MAX6675. Вывод показаний осуществляется на числовой индикатор ТМ1637.

Скетч

Скетч, как и в предыдущем случае, требует библиотеки Groove 4Digital Display для управления индикатором. Преобразователь MAX6675 контролируется процедурами из одноименной коллекции, расположенной по адресу:

Скетч можно скачать здесь: https://cloud.mail.ru/public/Y8Yz/jYWsjgY29

↑ 1. Техническое задание

Поскольку заказчик не мог внятно сказать, что ему нужно, пришлось придумывать его самому. Диапазон регулировки.

Комфортную температуру воды я определил, когда влез под душ со спиртовым термометром. Диапазон, с некоторым запасом оказался +30…40 градусов.

Мощность нагревателя.

Мощность ТЭНа я выбрал 1 кВт из следующих соображений: обычная электроарматура (контакты, провода и т. п.) рассчитана на 6 А. Надо учитывать ограничение потребления мощности на даче. Затем, надо учесть, что воду надо не кипятить, не превращать её в пар, на что уходит львиная доля мощности, а просто подогреть. Выбор, например, нагревателя мощностью от 2 кВт привёл бы к тому, что монтаж надо было бы делать толстыми жесткими проводами, расчитаными на ток от 10 А. Кроме того, потребовался бы теплоотвод большего размера, а мне хотелось сделать малогабаритное устройство.

Электробезопасность.

Хорошее заземление сделать не так просто. И единственной надежной защитой при пользовании душем может быть только полное отключение нагревателя от электросети. Исходя из этого, выбиралась конструкция – перед приёмом душа устройство надо выдернуть из розетки. Дополнительная степень защиты – сетевой выключатель с размыканием обоих проводов. Кроме того, должна быть полная гальваническая развязка датчика температуры и платы управления от сети. Понятно, что гарантировать изоляцию ТЭНа мы не можем, тем не менее, надо принять все меры по уменьшению возможности поражения током даже при грубых нарушениях техники безопасности пользователем. Здесь надо включать УЗО, но это выходит за пределы нашей темы.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: