Маркировка резисторов: буквенная, цветовая, для smd (с примерами)

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность

Эти величины должны быть минимальными.

Расчет резисторов

Для подбора и установки элементов в схему необходимо предварительно рассчитать номинал и мощность компонентов.

Формула для расчета сопротивления и мощности

Сопротивление тока: формула

Используют Закон Ома для участка цепи, чтобы вычислить сопротивление резистора, формула имеет вид:

R = U/I,

где:

  • U – напряжение на выводах элемента, В;
  • I – сила тока на участке цепи, А.

Эта формула применима для токов постоянного направления. В случае расчётов для переменного тока берут в расчёт импеданс цепи Rz.

Важно! Строение схем не ограничивается установкой только одного резистора. Обычно их множество, соединены они между собой параллельно и последовательно

Для нахождения общего показателя применяют отдельные методы и формулы.

Последовательное соединение

При таком соединении «выход» одного элемента соединяется с «входом» другого, они идут последовательно друг за другом. Как рассчитать резистор в этом случае? Можно использовать электронный онлайн-калькулятор, можно применить формулу.

Общее значение будет составлять сумму сопротивлений компонентов, входящих в последовательное соединение:

R123 = R1+R2+R3.

На каждом из них произойдёт одинаковое падение напряжения: U1, U2, U3.

Параллельное соединение

При выполнении данного вида соединения одноимённые выводы соединяются попарно, формула имеет вид:

R = (R1 x R2)/ (R1 + R2).

Обычно полученное значение R бывает меньше меньшего из всех значений соединённых элементов.


Последовательное и параллельное соединения

Информация. На практике параллельное или последовательное присоединение применяют, когда нет детали необходимого номинала. Элементы для таких случаев подбирают одинаковой мощности и одного типа, чтобы не получить слабого звена.

Смешанное соединение

Рассчитывать общее сопротивление смешанных соединений возможно, применяя правило объединения. Сначала выбирают все параллельные и последовательные присоединения и составляют эквивалентные схемы замещения. Их начинают рассчитывать, используя формулы для каждого случая. Из полученной более простой схемы вновь выделяют параллельные и последовательные звенья и опять производят расчёты. Делают это до тех пор, пока не получат самое элементарное соединение или один эквивалентный элемент. Вычисленный результат будет являться искомым.


Метод расчёта при смешанном соединении

Мощность

Одного поиска значения сопротивления недостаточно для того, чтобы применить деталь. Необходимо узнать, на какую мощность должен быть рассчитан элемент. В противном случае он будет перегреваться и выйдет из строя. Мощные детали при поверхностном монтаже лучше устанавливать на радиатор.

Расчет мощности резистора выполняется по формуле:

Р = I² * R = U²/R,

где:

  • Р – мощность, Вт;
  • I – ток, А;
  • U – напряжение, В;
  • R – сопротивление, Ом.

После определения мощности резисторов по формуле подбирают комплектующие, исходя из графического обозначения на схемах.


Основные обозначения мощности резисторов

Маркировка резисторов

На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.

Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.

При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 2.

Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1 и 2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.

Таблица 1. Обозначение номинальной величины сопротивления на корпусах резисторов.

Полное обозначение Сокращенное обозначение на корпусе
Обозначение Примеры обозначения Обозначение единиц измерения Примеры обозначения
единиц измерении Старое Новое Старое Новое
Ом Омы

13 Ом

470 0м

R Е

13R 470R (К47)

13Е 470Е (К47)
кОм килоОмы

1 кОм

5,6 кОм

27 кОм

100 кОм

К К

1К0

5К6

27K

100К(М10)

1К0

5К6

27K

100К(М10)

МОм мегаОмы 470 МОм

4,7 МОм

47 МОм

М М

М47

4М7

47 М

М47

4М7

47М

Таблица 2. Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов.

Допуск, % ±0,1 ±0,2 ±0,25 ±0,5 ±1 ±2 ±5 ±10 ±20 ±30
Обозначение старое ж У Д Р Л И С В Ф
новое в С D F G J К М N

Условные обозначения

Эти электроны , то носители заряда в электрической цепи, текут в направлении , противоположном от обычного электрического тока.

Символ для батареи в электрической схеме .

В проводящем материале движущиеся заряженные частицы, составляющие электрический ток, называются носителями заряда . В металлах, из которых состоят провода и другие проводники в большинстве электрических цепей , положительно заряженные атомные ядра атомов удерживаются в фиксированном положении, а отрицательно заряженные электроны являются носителями заряда, которые могут свободно перемещаться в металле. В других материалах, особенно в полупроводниках , носители заряда могут быть положительными или отрицательными, в зависимости от используемой легирующей примеси . Положительные и отрицательные носители заряда могут даже присутствовать одновременно, как это происходит в электролите в электрохимической ячейке .

Поток положительных зарядов дает такой же электрический ток и имеет тот же эффект в цепи, что и равный поток отрицательных зарядов в противоположном направлении. Поскольку ток может быть потоком либо положительных, либо отрицательных зарядов, либо обоих, необходимо соглашение о направлении тока, которое не зависит от типа носителей заряда . Направление обычного тока произвольно определяется как направление, в котором текут положительные заряды. Отрицательно заряженные носители, такие как электроны (носители заряда в металлических проводах и многих других компонентах электронных схем), поэтому текут в направлении, противоположном обычному течению тока в электрической цепи.

Справочное направление

Ток в проводе или элементе схемы может течь в любом из двух направлений. При определении переменной для представления текущего, то направление тока , представляющий положительный должен быть определен, как правило , с помощью стрелки на схему диаграммы схематическом . Это называется опорным направлением тока . При анализе электрических цепей фактическое направление тока через конкретный элемент цепи обычно неизвестно, пока анализ не будет завершен. Следовательно, эталонные направления токов часто назначаются произвольно. Когда схема решена, отрицательное значение тока подразумевает, что фактическое направление тока через этот элемент схемы противоположно выбранному опорному направлению.
я{\ displaystyle I} я{\ displaystyle I}

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

Разница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

Обозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

Обозначения переменных проводников

Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.

2.1. Непроволочные резисторы.

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

Плотность тока и закон Ома

Плотность тока — это скорость, с которой заряд проходит через выбранную единицу площади. Он определяется как вектор , величина которого представляет собой ток на единицу площади поперечного сечения. Как описано в разделе « , направление произвольное. Обычно, если движущиеся заряды положительны, то плотность тока имеет тот же знак, что и скорость зарядов. Для отрицательных зарядов знак плотности тока противоположен скорости заряда. В единицах СИ плотность тока (символ: j) выражается в основных единицах СИ — амперах на квадратный метр.

В линейных материалах, таких как металлы, и при низких частотах плотность тока на поверхности проводника одинакова. В таких условиях закон Ома гласит, что ток прямо пропорционален разности потенциалов между двумя концами (поперек) этого металлического (идеального) резистора (или другого омического устройства ):

язнак равноVр,{\ Displaystyle I = {V \ над R} \ ,,}

где — ток, измеренный в амперах; — разность потенциалов , измеренная в вольтах ; и — сопротивление , измеренное в Ом . Для переменных токов , особенно на более высоких частотах, скин-эффект заставляет ток неравномерно распределяться по поперечному сечению проводника с более высокой плотностью у поверхности, тем самым увеличивая кажущееся сопротивление.
я{\ displaystyle I}V{\ displaystyle V}р{\ displaystyle R}

Проволочные резисторы

Этот вид резисторов различаются по внешности и размера. Проволочные резисторы, как правило, изготавливают из длинного провода на основе сплавов, обычно хрома, никеля или сплава медно-никель-марганца. Этот вид резистора, пожалуй, один из самых старых видов. Проволочные резисторы имеют превосходные свойства, такие как высокие показатели мощности и низкие значения сопротивления. В процессе эксплуатации эти резисторы могут сильно нагреваться, и по этой причине их зачастую помещают в металлический ребристый корпус для лучшего охлаждения.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Подробнее

Как найти сопротивление, напряжение

Зная формулу закона Ома для участка цепи, мы можем рассчитать напряжение и сопротивление. Напряжение находится как произведение силы тока и сопротивления.

Формула напряжения и сопротивления по закону Ома

Сопротивление можно найти, разделив напряжение на ток. Все действительно несложно. Если мы знаем, что к участку цепи было проложено определенное напряжение и знаем какой при этом был ток, мы можем рассчитать сопротивление. Для этого напряжение делим на ток. Получаем как раз величину сопротивления этого куска цепи.

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Характеристики электротехнических материалов

Главной характеристикой в электротехнике считается удельная электропроводность, измеряемая в См/м. Она служит коэффициентом пропорциональности между вектором напряжённости поля и плотностью тока. Обозначается часто греческой буквой гамма γ. Удельное сопротивление признано величиной, обратной электропроводности. В результате формула, упомянутая выше, обретает вид: плотность тока прямо пропорциональна напряжённости поля и обратно пропорциональна удельному сопротивлению среды. Единицей измерения становится Ом м.

Рассматриваемое понятие сохраняет актуальность не только для твёрдых сред. К примеру, ток проводят жидкости-электролиты и ионизированные газы. Следовательно, в каждом случае допустимо ввести понятие удельного сопротивления, ведь через среду проходит электрический заряд. Найти в справочниках значения, к примеру, для сварочной дуги сложно по простой причине – подобными задачами не занимаются в достаточной степени. Это не востребовано

С момента обнаружением Дэви накала платиновой пластины электрическим током до внедрения в обиход лампочек накала прошло столетие – по схожей причине не сразу осознали важность, значимость открытия

Свойство материала

В зависимости от значения величины удельного сопротивления материалы делятся:

  1. У проводников – менее 1/10000 Ом м.
  2. У диэлектриков – свыше 100 млн. Ом м.
  3. Полупроводники по значениям удельного сопротивления находятся между диэлектриками и проводниками.

Эти значения характеризуют исключительно способность тела сопротивляться прохождению электрического тока и не влияют на прочие аспекты (упругость, термостойкость). К примеру, магнитные материалы бывают проводниками, диэлектриками и полупроводниками.

Что такое резистор и для чего нужен

Пассивный элемент, имеющий определенное сопротивление (постоянное или переменное) называют резистором. Более точное определение вам не даст никто, но эта простая формулировка тем не менее отражает основное свойство этого радиоэлемента.

Для полноты картины, приводим определение из «Википедии»:

Есть еще сопротивления с нелинейными характеристиками, которые изменяют параметры в зависимости от различных условий: температуры, напряжения, света и т.д. Они хоть и являются сопротивлениями, но имеют отдельные названия (варистор, термистор и т.д.), немного иное обозначение и другие технические характеристики. В этой статье речь пойдет о постоянных и переменных резисторах, но тех, которые имеют линейные характеристики (почти линейные, так как идеала нет).

Называют эти элементы либо «резистор» либо «сопротивление». Первое название — произошло от латинского resistо, что переводится как сопротивление. Оба названия отражают основное предназначение этого элемента — изменять сопротивление электрической цепи. На схемах европейского происхождения постоянный резистор обозначается в виде небольшого прямоугольника. На американских схемах принято другое обозначение — в виде ломаной линии. В любом случае рядом со значком стоит латинская буква R и число, которое обозначает номер элемента.

Как выглядит резистор: наиболее типичные виды постоянных резисторов и обозначение в схемах

В небольших схемах рядом с обозначением может стоять номинал, в больших в отдельной таблице (спецификации) прописан тип резистора и его параметры.

Обозначение резисторов на схеме с указанием номинального сопротивления

Без резистора не обходится ни одна схема. Ни электрическая, ни электронная. Назначение резисторов в цепи может быть таким:

  • для ограничения тока;
  • для создания падения напряжения до определенного значения.

Например, в цепи течет определенный ток, но надо использовать элемент, который не рассчитан на такой ток. В этом случае ставят резистор, после которого ток понижается до нужного уровня. Что делает резистор в схеме? Понижает ток до приемлемого значения. В этом случае часто называют их  токоограничивающими — по той задаче, которую они выполняют. Аналогично поступают и с напряжением, только рассчитывается в данном случае не ток, а напряжение.

Виды резисторов: внешний вид постоянных сопротивлений. Справа SMD резистор — предназначен для поверхностного монтажа

Если говорить о внешнем виде, чаще всего, представляют собой небольшого размера цилиндр, от торцов которого отходят монтажные ножки. Чаще всего они выполнены из проволоки, реже из металлической ленты. Бывают резисторы в виде прямоугольного параллелепипеда (керамические) и в виде небольшого прямоугольника (SMD технология) для поверхностного монтажа на печатных платах.

СКИН-ЭФФЕКТ

Если пропустить по проводнику переменный электрический ток высокой частоты, то окажется, что весь ток в проводнике будет протекать по тонкому поверхностному слою. Это явление и называют скин-эффектом. Само название происходит от английского слова, означающего «кожа».

Для того чтобы понять, почему высокочастотный ток течет только по поверхности проводника, рассмотрим достаточно длинный цилиндрический проводник (см. рис.), к концам которого приложено переменное напряжение, изменяющееся во времени с частотой ω.

Начнем со случая ω = 0, т. е. постоянного напряжения, когда по проводнику течет постоянный электрический ток. Причина электрического тока — это электрическое поле, напряженность которого при постоянном напряжении одинакова в любой точке поперечного сечения. Следовательно, постоянный электрический ток равномерно распределен по всему сечению проводника. Ток в проводнике создает вокруг себя магнитное поле B → , силовые линии которого представляют собой концентрические окружности с центром на оси проводника; причем магнитное поле существует не только снаружи, но и внутри проводника. При постоянном токе магнитное поле никак не влияет на распределение тока по сечению.

Иначе обстоит дело в случае переменного электрического тока. Если ток в проводнике меняется во времени, то вместе с ним будет изменяться и магнитное поле. Значит, меняется и поток магнитного поля, проходящий через контур abcd, и в контуре возникает электродвижущая сила (ЭДС) магнитной индукции. Легко убедиться (используя «правило буравчика» и правило Ленца), что эта ЭДС всегда работает против тока на участке ab и в направлении тока на участке cd. Поэтому мгновенное значение тока в центре проводника будет меньше, чем на его краю. Чем больше частота переменного тока, тем быстрее во времени меняется магнитное поле, тем больше ЭДС индукций и тем меньше электрический ток в центре проводника. Ток как бы вытесняется магнитным полем на поверхность проводника. При очень высоких частотах ЭДС индукции становится настолько большой, что полностью компенсирует внешнее электрическое поле внутри проводника и весь ток протекает по тонкому поверхностному слою. Это и есть скин-эффект. Точные расчеты позволяют определить толщину скин-слоя на поверхности, по которому течет высокочастотный ток: δ=(10 7 ρ/(2πω)) 1/2 , где ρ — удельное сопротивление проводника. Например, при частоте ω = 10 6 толщина скин-слоя в медном проводнике составляет δ

Скин-эффект возникает не только для высокочастотных токов, изменяющихся во времени по закону синуса или косинуса; самое главное — чтобы ток изменялся во времени. В частности, скин-эффект возникает и в момент подключения проводника к источнику постоянного напряжения. В момент включения в контуре abed возникает большая ЭДС индукции, которая полностью компенсирует внешнее электрическое поле на оси проводника. Поэтому ток сначала появляется на поверхности проводника, затем постепенно нарастает в более глубоких слоях и в последнюю очередь на оси проводника. Этот процесс заканчивается, когда ток равномерно распределится по всему сечению проводника. Такое поведение электрического тока напоминает распространение тепла при нагревании тела: оказывается, что оба этих процесса описываются одинаковыми уравнениями.

В случае быстрого изменения тока обычно вводят характерное время, за которое происходит проникновение тока (и магнитного поля) внутрь проводника, — скиновое время:

tск = 4π 2 a 2 /(10 7 ρ), где a — радиус проводника. Чем меньше удельное сопротивление проводника, тем дольше ток и магнитное поле будут проникать в проводник.

Что же произойдет в том случае, когда ρ = 0, т. е. в случае, если мы имеем дело со сверхпроводником (см. Сверхпроводимость)? Формально скиновое время станет бесконечно большим, магнитное поле не сможет существовать в сверхпроводнике, а ток будет протекать только по его поверхности. Так и происходит на самом деле. Это явление называют эффектом Мейснера (впервые наблюдался в 1933 г. немецким физиком В. Мейснером).

Скин-эффект играет очень важную роль в тех областях науки и техники, где используются высокочастотные или быстро меняющиеся во времени электрические и магнитные поля. Это сверхвысокочастотная электроника, радиотехника, физика плазмы и т. д.

Источник

проводит ли стекло электрический ток? Почему?

Стекло при обычных условиях, т. е. в твердом состоянии, является изолятором, и эта его особенность широко используется. Например, металлические контакты — вводы — в приборах впаивают непосредственно в стекло. Однако в расплавленном состоянии стекло проводит электрический ток.

согласна с предыдущим ответом!

стекло не проводник и не диэлектрик, это полу проводник т. к. его свойства несовпадают ни с диэлектриками (пластичность, прочность, хорошая теплопроводность, горение) и проводниками (хорошая теплопроводность, стойкость к огню, остальные свойства могут быть разными в зависимости от вещества) но зато идентичны свойствам полупроводника. например при высокой температуре — проводник, при низкой — диэлектрик

Принцип работы

Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:

U=IR

Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:

P=UI

Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:

P=U2/R=I2R

Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:

Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.

Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Комментарии: 1
  1. Карчик

    ;-) :| :x :twisted: :smile: :sad: :shock: :roll: :razz: :oops:

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: