Расчет внутреннего сопротивления источника напряжения
Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.
Батарея аккумуляторов генерирует ЭДС:
ε = E/Q, где:
- Е – энергия (Дж);
- Q – заряд (Кл).
Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.
Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.
Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).
Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.
Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.
- Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
- Из этого выражения r = ε/I — R.
Пример.
Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.
- По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
- Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.
В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.
Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.
Важно!
Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.
Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.
Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.
В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.
Развязывание напряжения питания схем на ОУ с однополярным питанием
Чтобы работать с положительными и отрицательными полуволнами переменного сигнала, схемам на ОУ с однополярным питанием требуется синфазное смещение входа. При использовании для реализации такого смещения шины питания, для сохранения значения КОНИП требуется соответствующее развязывание.
Обычной и неправильной практикой для смещения неинвертирующего входа на уровень VS/2 является применение резистивного делителя 100/100 кОм с развязывающим конденсатором емкостью 0,1 мкФ. При таких номиналах элементов развязывание напряжения источника питания недостаточно, так как частота полюса составляет всего 32 Гц. Часто возникает нестабильность схемы (низкочастотная генерация типа «шум мотора»), особенно при работе на индуктивную нагрузку.
На рис. 12 (неинвертирующая схема) и рис. 13 (инвертирующая схема) показаны улучшенные схемы для получения развязанного напряжения смещения VS/2. В обеих схемах смещение подведено к неинвертирующему входу, обратная связь приводит инвертирующий вход к той же величине смещения, и единичный коэффициент усиления на постоянном токе смещает оба входа на одинаковое напряжение. Развязывающий конденсатор C1 понижает коэффициент усиления ниже частоты BW3 до единицы.
Рис. 12. Неинвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен 1+R2/R1
Рис. 13. Инвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен – R2/R1
При использовании делителя 100/100 кОм хорошим эмпирическим правилом является применение конденсатора C2 с емкостью не менее 10 мкФ для получения спада на –3 дБ на частоте 0,3 Гц. Значение емкости 100 мкФ (полюс на частоте 0,03 Гц) достаточно практически для всех схем.
Схема цепей смещения в усилителях типа UBbIX = kUBX + b
Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.
Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением
тогда коэффициенты k и b будут определяться следующими выражениями
Расчёт усилителя с характеристикой типа UBbIX = kUBX + b
Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.
- Определим тип передаточной характеристики. Определяем коэффициенты k и b
Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид
- Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3
Подставив значения коэффициентов k, b и UCM получим следующее уравнение
Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.
Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.
- Рассчитаем величины сопротивлений R3 и R4
Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.
Основы измерения тока: Токоизмерительные усилители. Часть 2
В первой из трех частей этой статьи обсуждались особенности токоизмерительных резисторов. В данной части рассматривается конструкция и использование усилителей для повышения до приемлемых уровней напряжения на этих резисторах. Третья часть будет посвящена использованию Funnel-усилителей в процессе измерения тока в тех случаях, когда нагрузка находится под высоким напряжением.
Токоизмерительные резисторы, также называемые шунтами, относятся к альтернативной технологии измерения силы тока. Для того чтобы минимизировать отрицательное влияние на протекающий ток, они имеют небольшое сопротивление, которое создает пропорционально малое падение напряжения. Поэтому разработчикам приходится использовать схему, которая усиливает это небольшое напряжение перед преобразованием с помощью аналого-цифрового преобразователя (АЦП).
Речь обычно идет об увеличении небольшого, — порядка десятков или сотен милливольт, — напряжения на шунтирующем резисторе до десятых долей вольта или нескольких вольт. Эта задача часто выполняется операционным усилителем (ОУ) или токовым усилителем. Чувствительным к току является специализированный ОУ с дополнительной цепью регулировки усиления на основе прецизионных резисторов с лазерной подстройкой. Как правило, коэффициент усиления у этого усилителя напряжения составляет 20…60, а иногда даже более.
В корпусе токоизмерительного усилителя может также размещаться токовый шунт. Для случаев с более мощными токами из-за рассеивания мощности, приводящей к нагреву, предпочтителен внешний шунтовый резистор.
Наиболее распространенная конфигурация сигнальной цепи для контроля протекающего тока включает шунтовый резистор, аналоговый интерфейс (AFE), аналого-цифровой преобразователь (АЦП) и системный контроллер (рис. 1). В качестве усилителя AFE обычно используется операционный усилитель или токовый усилитель, который преобразует небольшое дифференциальное напряжение, падающее на шунтовом резисторе, в подходящее для АЦП значение.
Рис. 1. Способ измерения силы тока с использованием шунтового резистора
Есть два основных способа подключения шунтового резистора в цепь для измерения тока: на стороне низкого и высокого напряжения. Оба подхода имеют свои преимущества и недостатки.
Ключевые характеристики преобразователей
Для продолжения демонстрации нужно установить определенную терминологию как диамагнитные и различительные, функционирующие в дифференциальных устройствах.
Дифференциальными толчками считаются действия абсолютно одинакового колебания, но происходящие в противоположном направлении по фазе, находящихся на входных концах устройствах, не важно, где расположено место заземленности усилительного элемента. Диамагнитные – это сигнальные толчки, обладающие одинаковой фазой и амплитудой параллельно имеющиеся на 2-х входных концах различительного прибора
Диамагнитные – это сигнальные толчки, обладающие одинаковой фазой и амплитудой параллельно имеющиеся на 2-х входных концах различительного прибора.
Разобраться в информации подобных сигналов довольно несложно, как было сказано ранее, различительный усилитель используется для увеличения амплитуды между входящими сигнальными толчками. Следовательно, когда параллельно на входные концы преобразователя поступают сигналы с различной степенью напряженности, то это считается различительными. В том случае, когда на входные элементы поступают толчки в конкретное время равной напряженности, тогда это понимается как диамагнитные сигналы.
Различительные сигнальные толчки приходят на входной конец усилительного адаптера, в случае выбора равноценных и неравноценных входных элементов для различных толчков в сравнительных диаграммах.
Диамагнитными сигнальными толчками считаются токи тепла и сигнальные затруднения, идущие на входные концы устройства параллельно с равной степенью напряженности.
На основании вышеизложенного, сигнальные толчки на входном конце прибора определяются в зависимости от разновидности суммированного диамагнитного и различительного сигнального толчка:
Входящая степень различительного сигнального толчка равной: а показатель увеличения дифференциального сигнала равняется: Подобно синфазному сигналу входной уровень: Показатель увеличения синфазного сигнала равна:
Ключевым показателем, который характеризует качество дифференциального усилителя считается коэффициент снижения синфазного сигнала (КОСС)
либо в логарифмическом представлении
Где применяются
Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.
В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.
Можно выделить устройства, в которых применяются ОУ:
- Предусилители.
- Усилители звуковых и видеочастотных сигналов.
- Компараторы U.
- Дифусилители.
- Диференциаторы.
- Интеграторы.
- Фильтрующие элементы.
- Выпрямители (повышенная точность выходных параметров).
- Стабилизаторы U и I.
- Вычислители аналогового типа.
- АЦП (аналого-цифровые преобразователи).
- ЦАП (цифро-аналоговые преобразователи).
- Устройства для генерации различных сигналов.
- Компьютерная техника.
Операционные усилители и их применение получили широкое распространение в различной аппаратуре.
Схемы операционного усилителя
Все операционные усилители имеют два входа. Минус на схеме обозначает один вход, плюс — другой. Условное обозначение операционного усилителя можно узнать на схеме по знакам плюс и минус на вертикальной стороне треугольника. Это отличительные черты условного обозначения операционного усилителя. Если вы встретите на схеме подобный символ, но без знаков плюс и минус, то элемент, обозначенный таким образом, может представлять собой усилитель, но это не операционный усилитель.
Выход операционного усилителя представлен на вершине треугольника, противолежащей стороне, где находятся входные зажимы. Соединения с источником питания обычно обозначаются линиями на противоположных сторонах треугольника. Большинство операционных усилителей рассчитаны на работу от биполярного источника напряжения, имеющего положительное и отрицательное напряжения. В целом, операционные усилители могут работать в пределах напряжения от +-1 В до +-40 В. Наиболее распространенное напряжение питания для них 15 В.
Выход биполярного источника напряжения измеряется относительно нуля вольт, не всегда относительно земли шасси. Для указания точки отсчета используется стрелка с не закрашенной треугольной головкой. Такая стрелка показывает общую точку в схеме, называемую «общей точкой сигналов». Входной и выходной сигналы операционного усилителя также измеряются относительно общей точки сигналов. Соединения общих точек сигналов не всегда отображаются на принципиальных схемах с операционными усилителями.
Корректная подача опорного напряжения в ИУ
Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).
Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ
Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:
где R2/R1 = R4/R3.
Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом). Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.
Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения. Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.
На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.
Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ
Неинвертирующий усилитель
Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже
Схема включения неинвертирующего усилителя.
Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.
Таким образом, основные параметры данной схемы описываются следующим соотношением
Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя
Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.
Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.
Применение дифференциального усилительного каскада
Дифференциальные усилители применяются в следующих случаях.
Защита от помех и наводок
Если источник сигнала и его получатель удалены друг от друга, то в проводах связи возникают посторонние сигналы. Тогда соединяем эти каскады, как показано на схеме. Наводки в проводах, проложенных близко друг к другу, (витая пара) основная часть наводок имеет синфазный характер, а дифференциальный усилитель хорошо умеет такие сигналы фильтровать. Обычно приемлемое качество получается даже если не экранировать провод, но в особых случаях применяется экранированная витая пара.
Усилитель ошибки, отклонения
Если необходимо поддерживать некоторый параметр вблизи заданного значения, например, температуру в помещении, освещенность, напряжение на выходе преобразователя, то потребуется усилитель, который усилит отклонение измеряемого параметра от эталонного значения. Далее полученная разность пойдет на исполнительное устройство и подкорректирует его работу. На схеме изображено устройство, регулирующее силу тока нагрева в зависимости от температуры нагревательного элемента.
В схеме Z — нагревательный элемент, совмещенный с терморезистором с отрицательным температурным коэффициентом (при нагреве его сопротивление снижается).
Операционный усилитель
У операционного усилителя должны быть два входа — инвертирующий и неинвертирующий. Так что на входе любого операционника стоит дифференциальный усилительный каскад.
Измерительные схемы
Дифференциальные каскады применяются, когда необходимо измерить разницу между двумя напряжениями или силами токов.
Усилители сигналов с отрицательной обратной связью
При проектировании усилителя для получения заданной линейности нередко применяется отрицательная обратная связь. То есть часть выходного сигнала подается на вход в противоположной входному вазе. Иногда для этого также используется дифференциальный усилитель. На один его вход подается входной сигнал, а на другой — сигнал обратной связи.
(читать дальше…) :: (в начало статьи)
1 | 2 | 3 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.
Еще статьи
Интегральный аналог конденсатора большой емкости. Умножитель, имитатор…
Умножитель емкости. Имитатор большого конденсатора на интегральной микросхеме…
Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…
Изготовление дросселя, катушки индуктивности своими руками, самому, са…
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы…
Мощный полевой транзистор irfp2907. МОП, MOSFET. Свойства, параметры, …
Применение и параметры IRFP2907, мощного полевого транзистора, рассчитанного на …
Тиристорное переключение нагрузки, коммутация (включение / выключение)…
Применение тиристоров в качестве реле (переключателей) напряжения переменного то…
Конструирование (проектирование и расчет) источников питания и преобра…
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим…
Резонансный фильтр, преобразователь меандр — синус, синусоида. Отзыв, …
Практический опыт повторения конструкции преобразователя меандра в синусоиду на …
Плавная регулировка яркости свечения люминесцентных ламп дневного свет…
Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра…
Конструкция линейного источника питания
Линейные ИП, выполненные по классической схеме включают в себя:
- понижающий трансформатор;
- выпрямитель;
- фильтр;
- стабилизатор.
Линейные источники питания отличаются предельной простотой и надежностью, отсутствием высокочастотных помех. Высокая степень доступности комплектующих и простота изготовления делает их наиболее привлекательными для повторения начинающими радиоконструкторами. Кроме того, в некоторых случаях немаловажен и чисто экономический расчет — применение линейных ИП однозначно оправдано в устройствах, потребляющих до 500 мА, которые требуют достаточно малогабаритных ИП. К таким устройствам можно отнести:
- зарядные устройства для аккумуляторов;
- блоки питания радиоприемников, АОНов, систем сигнализации и т.д.
Необходимо отметить, что некоторые конструкции, не требующие гальванической развязки с промышленной сетью, можно питать через гасящий конденсатор или резистор, при этом потребляемый ток может достигать сотен мА. Эффективность и рациональность применения линейных ИП значительно снижается при токах потребления более 1 А.
Причинами этого являются следующие явления:
- колебания сетевого напряжения сказываются на коэффициенте стабилизации;
- на входе стабилизатора приходится устанавливать напряжение, которое будет заведомо выше минимально допустимого при любых колебаниях напряжения в сети, а это значит, что когда эти колебания высоки. необходимо устанавливать завышенное напряжение, что в свою очередь влияет на проходной транзистор (неоправданно большое падение напряжения на переходе, и как следствие — высокое тепловыделение);
- большой потребляемый ток требует применения габаритных радиаторов на выпрямляющих диодах и регулирующем транзисторе, ухудшает тепловой режим и габаритные размеры устройства в целом.
В настоящее время традиционные линейные источники питания все больше вытесняются импульсными. Однако, несмотря на это, они продолжают оставаться весьма удобным и практичным решением в большинстве случаев радиолюбительского конструирования (иногда и в промышленных устройствах). Причин тому несколько: во-первых, линейные источники питания конструктивно достаточно просты и легко настраиваются, во-вторых, они не требуют применения дорогостоящих высоковольтных компонентов и, наконец, они значительно надежнее импульсных ИП.
Типичный линейный ИП содержит в своем составе: сетевой понижающий трансформатор, диодный мост с фильтром и стабилизатор, который преобразует нестабилизированное напряжение, получаемое со вторичной обмотки трансформатора через диодный мост и фильтр, в выходное стабилизированное напряжение, причем, это выходное напряжение всегда ниже нестабилизированного входного напряжения стабилизатора.
Основным недостатком такой схемы является низкий КПД и необходимость резервирования мощности практически во всех элементах устройства (т.е. требуется установка компонентов допускающих большие нагрузки, чем предполагаемые для ИП в целом, например, для ИП мощностью 10 Вт требуется трансформатор мощностью не менее 15 Вт и т.п.). Причиной этого является принцип по которому функционируют стабилизаторы линейных ИП. Он заключается в рассеивании на регулирующем элементе некоторой мощности Ppac = Iнагр * (Uвх — Uвых). Из формулы следует, что чем больше разница между входным и выходным напряжением стабилизатора, тем большую мощность необходимо рассеивать на регулирующем элементе. С другой стороны, чем более нестабильно входное напряжение стабилизатора, и чем больше оно зависит от изменения тока нагрузки, тем более высоким оно должно быть по отношению к выходному напряжению.
Таким образом видно, что стабилизаторы линейных ИП функционируют в достаточно узких рамках допустимых входных напряжений, причем эти рамки еще сужаются при предъявлении жестких требований к КПД устройства. Зато достигаемые в линейных ИП степень стабилизации и подавление импульсных помех намного превосходят другие схемы. Рассмотрим несколько подробнее применяемые в линейных ИП стабилизаторы.
Простейшие (т.н. параметрические) стабилизаторы основаны на использовании особенностей вольт-амперных характеристик некоторых полупроводниковых приборов — в основном, стабилитронов. Их отличает высокое выходное сопротивление. невысокий уровень стабилизации и низкий КПД. Такие стабилизаторы применяются только при малых нагрузках, обычно — как элементы схем (например, в качестве источников опорного напряжения).
Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
А что покажет Falstad? Ноль Вольт.
Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.
Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
Смотрим, что имеем на виртуальном осциллографе:
Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.
Похожие:
Емкостный делитель напряжения дне-1000/400 Инструкция по эксплуатацииЕмкостный делитель напряжения высокочастотный является значимым элементом всей системы; главным образом, применяется для измерения… | Инструкция по эксплуатации москва 2004 гБлок информационная приставка (далее в тексте ип или информационная приставка) предназначен для подачи звуковых программ с радиоприёмника… | ||
Инструкция по проверке трансформаторов напряженияВ инструкции приведены программа и методы проверки трансформаторов напряжения (ТВ) и их вторичных цепей. Даны основные сведения о… | Техническое задание на открытый запрос предложения по выбору организации…Определение относительной и абсолютной основной погрешности измерения напряжения | ||
Инструкция по эксплуатации Стабилизатор напряжения «сатурн» снэ-о-80 (снэ-т-240)Стабилизатор напряжения электромеханический с микропроцессорным управлением (далее именуемый – изделием) предназначен для стабилизации… | Инструкция, щупы, холстерДанный прибор является компактным цифровым мультиметром с 4 1/2 разрядной шкалой, предназначенным для измерения постоянного и переменного… | ||
Техническое задание на поставку Расходомеров-счетчиков турбинных…Средство измерения должно быть предназначено для измерения объема и объемного расхода жидких сред с вязкостью до 100 мм2/с в стендовом… | Инструкция по настройкеВ случае измерения влажности при помощи ёмкостного датчика второй канал служит для измерения температуры «сухого термометра», которая… | ||
Программа вступительного экзамена в аспирантуру по специальности…«Энергетическое оборудование высокого напряжения и его надежность», «Молниезащита» «Перенапряжения и координация изоляции», «Эксплуатация… | Инструкция 1 штКонтроллер предназначен для применения в простых и недорогих системах контроля доступа. Контроллер работает с замками, которые открываются… | ||
Учебное пособие по курсу «Метрология и радиоизмерения»Приводится структурная схема, дается описание основных характеристик прибора. Дана методика расчета предельных погрешностей измерения… | Указатель высокого напряжения для фазировкиРЭ), объединенное с паспортом и формуляром, является документом, удостоверяющим гарантированные предприятием-изготовителем основные… | ||
Техническое заданиеПредмет предложения – Трансформатор силовой масляный трехфазный (понижающий) предназначен для преобразования электроэнергии переменного… | Программа «Аттестация»Термометры контактные цифровые тк 01, 04, 06, 09, 11 предназначенные для измерения температуры, относительной влажности, различных… | ||
Методические указания для выполнения лабораторных работ по дисциплине…Цель работы: ознакомиться с методами измерения сопротивления элементов и изоляции электрических цепей | ХарактеристикиИзмерение напряжения и тока при помощи обычных измерительных трансформаторов или датчиков тока и напряжения |
Инструкция, руководство по применению
Неинвертирующий усилитель
Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже
Схема включения неинвертирующего усилителя.
Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.
Таким образом, основные параметры данной схемы описываются следующим соотношением
Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя
Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.
Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.
Экспоненциальный преобразователь
Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже
Экспоненциальный преобразователь.
Работа схемы описывается известными выражениями
Таким образом, выходное напряжение составит
Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.
Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.
Подача опорного напряжения на ОУ, ИУ и АЦП
На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.
Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием