Требования к прибору
Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей. Эти технические требования выглядят так:
- регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
- нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.
Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.
Ремонт и схемотехника энергосберегающих ламп.
Энергосберегающие лампы, или компактные люминесцентные лампы (КЛЛ), можно условно разделить на две части:
1) — сама люминесцентная лампа
2) — электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы.
Рассмотрим поближе, что там есть в электронном балласте:
— Диоды — 6 шт. Высоковольтные (220 Вольт) обычно маломощные (не больше 0,5 Ампер).
— Дроссель. (убирает помехи по сети).
— Транзисторы средней мощности (обычно MJE13003).
— Высоковольтный электролит. (как правило 4,7 мкФ на 400 вольт).
— Обычные конденсаторы на разной емкости, но все на 250 вольт.
— Два высокочастотных трансформатора.
— Несколько резисторов.
Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы
(лампа мощностью 11Вт).
Схема состоит из цепей питания, которые включают помехо-защищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.
При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора.Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте,определяемой конденсатором C3, потому что его ёмкость намного меньше,чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.
Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.
Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.
Неисправности энергосберегающих ламп
Наиболее частые причины поломки энергосберегающих ламп — обрыв нити накала или выход из строя ЭПРА. Как правило, причиной выхода из строя последнего бывает пробой резонансного конденсатора или транзисторов. Конденсатор C3, часто выходит из строя в лампах, в которых используются дешёвые компоненты, рассчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя транзисторов Q1 и Q2 и вследствие этого — R1, R2, R3 и R5. При запуске лампы генератор оказывается,перегружен и транзисторы не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается, в основном перегорают силовые транзисторы. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой.
Чаще всего лампы перегорают в момент включения.
Как правило лампа собрана на защелках.
Необходимо её разобрать:
Отключаем колбу:
Проверяем Омметром нити накала колбы.
Как протравить плату
Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.
Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа – плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.
Как сделать регулирующий БП из обычного, от принтера
Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.
Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.
Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.
Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.
Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.
Как сделать регулировку?
Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.
Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.
Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.
Видео канала “Технарь”.
Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.
Печатная плата для сборки
Печатная плата лабораторного БП от Electronics-lab
Плата разделена на 2 части, чтобы собрать всё как модуль на радиаторе. Использовались транзисторы BD249. Поскольку они хуже отводят тепло к радиатору, поставили 2 шт. Если ток блока питания будет увеличен до 5 А, стоит подумать о дальнейшем увеличении количества транзисторов, чтобы уменьшить мощность рассеиваемую на них.
Плата лабораторного БП — вид деталей
Что касается регулирования ограничения тока, для охвата диапазона до 5 А необходимо изменить значение резистора R18. Используя потенциометры со значениями, такими как перечисленные в списке компонентов, для 5 А резистор R18 должен быть заменен на значение около 33 кОм. На это может влиять разброс параметров стабилитрона который задает напряжение на выходе U1. Конечно следует использовать и более мощный трансформатор.
Печатные платы должны быть соединены с помощью двухрядных угловых штырьков. Большая плата имеет все элементы на исходной, кроме 4-х выпрямительных диодов (D1-D4). Тут использовался мостовой выпрямитель прикрученный к радиатору. На плате имеются только монтажные отверстия для соединения диодного моста с помощью проволочных секций.
Рисунок дорожек (сторона пайки) выполнен в черном цвете и может быть использован в качестве маски для повторения платы. Далее показано расположение элементов, а дорожки (вид через плату) изображены серым цветом. Элементы отмечены синим цветом и соответствующие описания находятся внутри или рядом с ними. Перемычки отмечены красным, а зеленые цифры рядом с контактными площадками соответствуют номерам на схеме и используются для подключения трансформатора, потенциометров, транзистора Q4 и выходных клемм источника питания. Меньшая плата предназначена для 2 транзисторов T1 и T2 BD249 (вместо оригинального транзистора Q4).
В описании этого источника питания трансформатор должен иметь напряжение 24 В, но есть некоторые сомнения по поводу этого напряжения. Схема также выдает -5 В для питания операционных усилителей. Выпрямленное напряжение от трансформатора даст нам около 36 В, а эти -5 В в сумме дадут более 40 В для операционных усилителей (U2 и U3). Параметры этих микросхем не предусматривают такое высокое напряжение, и даже если они сгорят — плохо когда радиоэлементы работают на пределе своих возможностей. Советуем использовать трансформатор с более низким напряжением — около 21 В, что означает максимальное выходное напряжение составит 28 В.
Также проведена замена моста выпрямителя и отказ от отдельных диодов, используемых в пользу 8A-200V KBU8D. Следующие изменения — это конденсатор C1 4400/100 В, резистор R1 на 5 Вт, дополнительные операционные усилители. Использовались LM318 и Q2 транзистор — KD503, для которого установлен охлаждающий вентилятор, что видно на фотографиях. Несмотря на использование пластикового корпуса, радиатор плюс вентилятор достаточны для хорошего отвода тепла. Если речь идет о вентиляторе, он включается в зависимости от температуры. Блок питания работает действительно отлично. Стоимость сборки не превышает 1000 рублей, из которых самый дорогой элемент — трансформатор.
Естественно блок питания имеет защиту и ограничение по току. Можно увеличить выходной ток до 5 А, необходимо лишь заменить несколько элементов (увеличить их мощность), дополнительно улучшить охлаждение на транзисторе или параллельно подключить несколько так, чтобы регулирование стало возможным до 5 А.
Если не хотите ставить кулер — ставьте переключение обмоток для снижения мощности на силовом транзисторе. При 5 В и 3 А например слишком большая мощность высвобождается транзистором в воздух, поэтому переключение обмоток спасает от перегрева.
Фото лабораторных блоков питания своими руками
Источники
- https://supereyes.ru/articles/power_supply/laboratornyy_blok_pitaniya_impulsnyy_ili_lineynyy_kakoy_vybrat/
- https://svoimirykami.guru/laboratornyj-blok-pitaniya-svoimi-rukami/
- https://amperof.ru/sovety-elektrika/laboratornyj-blok-pitaniya-svoimi-rukami.html
- https://USamodelkina.ru/16407-reguliruemyj-blok-pitanija-ochen-prosto-po-silam-dazhe-shkolniku-podrobno.html
- https://tehnoobzor.com/schemes/pitanie/2779-kak-sdelat-laboratornyy-blok-pitaniya-svoimi-rukami.html
- https://www.ixbt.com/live/topcompile/power-supply_3.html
Индикатор цифровой для блока
Для визуализации показаний напряжения и тока в нагрузке применил вольтамперметр DSN-VC288, который обладает следующими характеристиками:
- диапазон измерений: 0-100 В 0-10A;
- рабочий ток: 20mA;
- точность измерения: 1%;
- дисплей: 0.28 ” (Два цвета: синий (напряжение), красный (сила тока);
- минимальный шаг измерения напряжения: 0,1 В;
- минимальный шаг измерения силы тока: 0,01 A;
- рабочая температура: от -15 до 70 °С;
- размер: 47 х 28 х 16 мм;
- рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 – 30 В.
Учитывая диапазон рабочего напряжения существует два способа подключения:
Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт, то тогда схема подключения выглядит так:
Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт, то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:
В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора – 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.
Solar Power for Beginners: Basics, Design and Installation of a Solar Panel System
Do you dream an eco-friendly home even if you are not expert in electrical systems? If you want to live off-grid you are in the right place. If what has always stopped you is the worry of initial investments, put these thoughts aside. With this pocket manual you will discover how to save thousands of dollars in the long run by having a smart home. Solar Power for Beginners is the complete guide that will allow you to achieve all this, from the necessary supplies to the connection of all the tools. The step-by-step solution illustrated and written in a simple and direct way to effectively help anyone who wants to approach this technique.
Что нужно для подключения
Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:
трехжильный кабель ВВГнГ-Ls
Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.
выключатель трехпозиционный
Данный выключатель в отличие от простых, имеет три состояния:
123
Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.
Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.
С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.
провод ПУГВ разных цветов
Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.
Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.
Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.
Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.
Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п
Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока
А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.
Файлы
Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А
Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.
Лабораторный блок питания 30в 5а, результат
Плата управления собранная на макетке.
Плата основного диодного моста.
Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.
Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.
Демонстрация работы:
В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.
Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…
Сборка
Собирать буду по простой схеме. В первичной цепи трансформатора установил выключатель и предохранитель. С вторички напряжение поступает на диодный мост и электролитический конденсатор. С них напряжение поступает на понижающий модуль. С модуля, через Вольт-Ампер метр поступает на выходные клеммы. Подстроечные резисторы выпаиваем и на проводах выносим за пределы платы, но устанавливаем регулируемые. Нижняя часть схемы, с линейным стабилизатором, служит для питания Вольт-Ампер метра.
Схема регулируемого блока питания Расставляю силовые элементы на нижней части корпуса. Конденсатор установил между трансформатором и диодным мостом.
Соединяем трансформатор, диодный мост и понижающий модуль. Витые провода пойдут на регулировочные резисторы.
Так получилась часть для питания приборчика. Диодный мостик, электролитический конденсатор и стабилизатор на 5 вольт.
На задней панели вырезаю отверстие под сетевой разъем. Такой разъем можно снять со старого компьютерного блока питания.
На заготовке из композитного пластика, вырезаю все необходимые отверстия. Сетевой выключатель клавишный, до последнего момента не знал что установить. Разметку производил по защитной пленке, ее при установке сниму.
Распаиваю резисторы. Подключаю выключатель. Распаял провода на Вольт-Ампер метр. В разрыве предохранитель, на задней панели.
Устанавливаем все элементы передней панели на свои места. Защитная пленка снята.
Ручки на резисторы нашел разных цветов. Верхнюю крышку покрасил. Можно испытать. Диапазон регулировки получился от 1 до 27 вольт. Ток на короткое замыкание получился около 9 ампер.
Такой ЛБП получился. Для всех моих потребностей более чем достаточно.
Лабораторный блок питания своими руками 0-30 В
Многие уже успешно повторили и давно используют проект лабораторного БП от Electronics-lab. Повторил его и я сделав несколько изменений в схеме блока питания. Трансформатор представляет собой тороид 400 Вт 4×12 В, в котором 2 обмотки соединены для источника питания, а другая используется для питания измерительных приборов. Если говорить о них, тут использовались 2 цифровых мультиметра, потому что они стоят всего 300 рублей за пару, и их достаточно для показа А/V. Они питаются от источника питания, схема которого основана на базовом включении LM317.
- Схема БП с регулировкой U / I
- Список элементов схемы
- Печатная плата для сборки
- Схема подключения охлаждения