Стабилизаторы напряжения или как получить 3,3 вольта

Изучаем популярные схемы стабилизатора напряжения

В первую очередь надо выбрать схему устройства. В глобальной сети много рекомендаций собирать такие блоки на интегральных линейных стабилизаторах 7812 (КР142ЕН8Б).

Схема стабилизатора на 7812 из интернета (явная ошибка – на входе должно быть не менее 14,5 вольта).

Те, кто публикует такие схемы, обращают внимание на их простоту и отсутствие необходимости настройки, совершенно забывая об одной проблеме. Для нормальной работы на таком стабилизаторе должно падать не менее 2,5 вольт – об этом написано в любом даташите

Попросту, для хоть сколько-нибудь эффективной стабилизации на выходе, на входе должно быть не менее 14,5 вольт. В автомобиле с исправным генератором такого напряжения быть не должно, а при более низком значении применять такую схему бессмысленно. В качестве компромисса можно использовать девятивольтовый стабилизатор (LM7809), его работоспособность начнется от 11,5 вольт на входе, но при этом упадет яркость свечения фонарей. По требованиям ГОСТ минимальная сила света должна составлять 400 кд, и ниже этого предела опускаться нельзя.

Еще более бездумными выглядят рекомендации ставить на входе диод.

Схема из сети – микросхема 7812 с диодом на входе.

Его назначение весьма сомнительно – защищать микросхему от обратной полярности при стабильном монтаже не надо. Но на кремниевом p-n переходе дополнительно упадет еще 0,6 вольта, и для нормальной работы понадобится не менее 15 вольт.

Схемы с интегральным линейником на 12 вольт (с диодом или без него) пригодны разве что для среза высоковольтных всплесков по шине +12 вольт (если таковые на самом деле присутствуют). То есть они могут служить своеобразным «барьером Зенера», но такой барьер можно сделать гораздо проще. Надо включить параллельно цепочке светодиодов стабилитрон Uст, немного превышающее рабочее напряжение. В нормальном режиме его сопротивление велико, он не окажет влияния на работу осветительного прибора. При превышении напряжения стабилизации (например, 15 вольт) он откроется и «срежет» излишек.

Подключение стабилитрона параллельно фонарю.

Немного лучше работают стабилизаторы на микросхемах LDO (low drop out). Они выглядят подобно обычным линейным регуляторам, но им для нормальной работы необходимо падение всего в 1,2 вольта, и эффективная стабилизация начнется уже при 13,2 вольтах. Что уже лучше, но все равно недостаточно для нормального функционирования. Для работы в такой схеме подойдут микросхемы LM1084 и LM1085, но схема их включения несколько сложнее.

Схема включения LDO LM1084.

Для получения выходного напряжения 12 вольт сопротивление резистора R1 должно быть 240 Ом, а R2 – 2,2 кОм. Имеется принципиальное препятствие для дальнейшего снижения падения – регулятор выполнен на биполярном транзисторе, и на его эмиттерном и коллекторном переходах должно упасть не менее 1,2 вольт. Это легко обходится применением полевого транзистора в качестве регулирующего элемента. Интегральные микросхемы, построенные по такому принципу, найти сложно, еще сложнее подобрать по нужным параметрам и они стоят дороже. А вот сделать самому такое устройство на дискретных элементах по силам даже радиолюбителю средней квалификации.

Схема линейного регулятора на мощном полевом транзисторе.

Номиналы элементов:

  • R1 — 68 кОм;
  • R2 — 10 кОм;
  • R3 — 1 кОм;
  • R4,R5 — 4,7 кОм;
  • R6 — 25 кОм;
  • VD1 — BZX84C6V2L;
  • VT1 — AO3401;
  • VT2,VT3 — 2N5550.

Выходное напряжение задается соотношением R5/R6. При указанных номиналах на выходе будет 12 вольт, на входе понадобится не более 12,5. Это cерьезное улучшение. Но принципиального скачка можно добиться только применением импульсного источника питания. Такой преобразователь по схеме Step-Up можно собрать на микросхеме XL6009.

Схема импульсника на XL6009.

Такой стабилизатор в готовом виде можно заказать на популярных интернет-площадках. Но есть проблема – производители из экономии часто устанавливают элементы, рассчитанные на ток не более 1 А (хотя микросхема способна выдать ток до 3 А). Или, например, могут быть не установлены входные или выходные оксидные конденсаторы. Даже диод Шоттки  N5824, указанный в даташите, при токах выше 1,5 А начинает греться.  Вместо него надо применить более мощный диод, например SR560. Все эти замены и упрощения ведут к перегреву платы и выходу ее из строя.

Принцип работы

Как и все стабилизаторы напряжения, так и нормализаторы марки «Ресанта» состоят из:

  1. автоматического трансформатора.
  2. электронного блока.
  3. вольтметра.
  4. элемента, который осуществляет подключение/отключение определенных обмоток.

Учитывая то, что производитель осуществляет выпуск различных видов стабилизаторов, элементы для подключения обмоток являются разными. О них мы отметим несколько ниже, а именно тогда, когда будем рассматривать особенности работы и ремонта каждого вида нормализатора от латвийского производителя.

Электронный блок любого стабилизатора компании «Ресанта» осуществляет управление всей работой устройства. Он управляет работой вольтметра и получает данные об уровне входного напряжения. Дальше он сравнивает это напряжение с нормированным и определяет, сколько вольт нужно добавить или отнять.

После этого определяется то, какие обмотки стабилизатора нужно подключить или же отключить. Когда известна эта информация электронный блок подключает/отключает необходимые обмотки с помощью реле или сервопривода и наши электроприборы получают нормализованный ток.

Такой принцип стабилизации тока присущ каждому стабилизатору напряжения от компании «Ресанта». Однако процесс стабилизации в различных моделях компании имеет отличия. Они обусловлены тем, что по-разному происходит подключение/отключение обмоток трансформатора.

В стенах компании выпускается два типа стабилизаторов:

  1. Электромеханические.
  2. Релейные.

И, конечно, ремонт каждого из них имеет свои особенности.

Это интересно: Как защитить провода от кролика?

Список источников

  • samelectrik.ru
  • amperof.ru
  • staby.ru
  • generatorexperts.ru
  • electricadom.com
  • SamElectric.ru
  • lightika.com
  • jelectro.ru

Подключение через 4 контактное реле от генератора или датчика масла

Два следующих способа имеют общую основу и подразумевают работу дневных ходовых огней только после запуска двигателя. Схема включения ДХО от генератора базируется на переключении четырёх контактного реле и геркона.

Контакты реле ДХО подключают так:

  • 30 – на плюсовые выводы светодиодных модулей;
  • 85 – на плюсовой провод к габаритам;
  • 86 – на любой вывод геркона;
  • 87 и второй вывод геркона – на «+» аккумулятора.

Проверив надёжность всех контактов, переходят к настройке. Для этого заводят двигатель и, перемещая геркон вблизи генератора, добиваются его срабатывания и стабильного свечения ДХО. Затем геркон прячут в термотрубку и с помощью нейлоновых стяжек фиксируют в найденном месте.

В момент пуска двигателя, а затем и генератора замыкаются контакты геркона и реле, подавая напряжение питания на светодиоды ходовых огней. При этом лампы габаритов остаются отключенными, так как ток через катушку реле мал, чтобы их зажечь.

В отсутствие геркона можно запитать ДХО от датчика давления масла. В этом случае 86-й контакт соединяют с лампой давления масла. В остальном схемотехника дублируется.

Обе схемы имеют общий недостаток. Их нельзя применять, если в габаритах установлены светодиоды.

Схема стабилизатора напряжения 12 вольт для светодиодов в авто собственными руками на базе LM2940CT-12.0


Схема LM2940CT-12.0

Также для сборки качественного стабилизатора напряжения на автомобиль используют схему LM2940CT-12.0. В качестве корпуса используем абсолютно любой материал, за исключением древесины. Если в машине планируется установить свыше 10 светодиодных ламп, тогда к стабилизатору желательно прикрепить ещё и алюминиевый радиатор.

Возможно, некоторые уже имели опыт работы с таким оборудованием, и скажут, что нет никакой необходимости использовать дополнительные детали — сразу напрямую подключаем светодиоды и наслаждаемся работой. Так сделать можно, но в таком случае лампочки будут постоянно находиться в неблагоприятных условиях, а потому скоро сгорят.

Достоинства всех приведенных схем стабилизатора напряжения 12В собственными руками  — простота сборки. Чтобы собрать стабилизатор, не нужно обладать какими-то особыми умениями и навыками. Но если предоставленные картинки вызывают только недоумение, тогда своими руками не следует пытаться собрать схему.

Стабилизатор напряжения 12 вольт для светодиодов

Стабилизатор напряжения 12 вольт для светодиодов — современное любительское оформление авто практически не обходится без использования светодиодов. Но некоторые моменты тюнинга включают в себя работы, для которых нужно приложить немало усилий. В качестве примера можно привести трудоемкую установку в передние фары автомобиля светодиодной ленты. Но вот когда вся эта красота перестает вдруг работать, из-за того, что вышел из строй один или несколько светодиодов. Поэтому становится очень обидно и жалко потраченного времени и усилий на установку LED-ленты. А вот если бы изначально была грамотно построена схема подключения, то такого бы не случилось.

Дело в том, что в подключаемой схеме не был использован стабилизатор напряжения, который предназначен именно для создания корректной работы светодиодов. В случае установки в цепь бортовой сети автомобиля светодиодов с номинальным током 250-300 мА, то тогда рекомендуется включать в схему ограничительный резистор. Этот гасящий резистор ограничит ток в тракте, тем самым увеличит срок службы светодиодов.

При нестабильном напряжении бортовой сети машины, необходимо устанавливать в схему линейный стабилизатор.

Простейший стабилизатор напряжения 12 вольт

Данная схема выполнена с использованием линейного стабилизатора КРЕН8Б либо KIA7812A, а также выпрямительного диода 1n4007 с постоянным обратным напряжением 1000v.

Стабилизатор напряжения 12 вольт для светодиодов в другом варианте

Ниже представленная схема выполнена с некоторыми изменениями, то-есть в ее входном и выходном тракте добавлены конденсаторы, предназначенные для сглаживания пульсаций.

Для этого варианта схемы необходимо иметь: сам стабилизатор напряжения на базе микросхемы L7812, конденсатор с емкостью 330µF 16v, а также конденсатор 100µF 16v, выпрямительный диод 1N4001, монтажные провода и термоусадочный кембрик диаметром 3 мм.

Усовершенствованная схема стабилизатора напряжения 12 вольт

Последовательность монтажа:

1. Делаем короче один вывод на стабилизаторе;2. Хорошо облуживаем;3. Припаиваем к укороченному выводу стабилизатора диод и конденсаторы;4. Помещаем монтажные провода в термоусадочный кембрик.

1. Припаиваем монтажные провода;2. На провод одеть кембрик, для усадки нагреть его паяльником или феном;3. Подключаем к левому выводу питание, а к правому выводу выход к светодиодной ленте;4. LED-лента светится! Теперь она прослужит гораздо дольше, чем без применения стабилизатора.

Примечание: обе представленные схемы рассчитывались на работу с сопротивлением нагрузки не более 1А. В случае необходимости использования нагрузок с током более 1А, то тогда можно установить стабилизатор L78S12CV (2А) на теплоотводе.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Проверка светодиодов без выпаивания


Щупы для мультиметра с переходниками

Проверять LED-светильник можно, не выпаивая его диодные элементы. Понадобится переходник, который изготавливается самостоятельно из канцелярских скрепок, отдельных жил провода, кусочков иголок для шитья, витой пары проводки. Выбранное изделие припаивается к щупам измерителя. Между частями переходника делается прокладка из текстолита, а потом вся конструкция обматывается изоляционной лентой.

Щупы мультиметра с переходником подсоединяются на контакты светоизлучающего диода или на колодки PNP. Тестирование производится последовательно, для каждого элемента.

Проверка работоспособности светоизлучающих диодов в фонарике


Тестирование светодиодной платы фонаря

Тест стандартного фонаря – наглядный пример работ, для которых не понадобится выпаивать элементы. Чтобы узнать, рабочие ли LED-источники, нужно:

  1. Разобрать фонарик, извлечь из него плату со светодиодами.
  2. Без удаления припоя подкинуть щупы на контакты PNP-разъема, соблюдая полярность.
  3. Поставить переключатель на прозвонку.
  4. Смотреть на табло и на подсветку.
  5. Установить, исправна ли схема, путем проверки ее сопротивления. Показатель сопротивлений, равный нулю, при параллельном подключении говорит о неисправности одно светодиода.

Регулируемый блок питания на стабилизаторе напряжения LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18 КОм (нужно подбирать под ток светодиода).R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.

R3 — 5,6 Ком.R4 – 240 Ом.C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФC3 — 10 мкФ (электролитический)C4 — 1 мкФ (электролитический)DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

Важнейшие характеристики светодиодов

Полярность.

Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому, при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.

Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!

Напряжение питания и падение напряжения.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).

Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Ток.

Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включённого резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.

Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам

Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector