Химические источники
Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:
- гальванические элементы, являющиеся первичными источниками ;
- электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;
*ХИТ — химические источники тока.
Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).
Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:
- солевые или «сухие»;
- щелочные;
- литиевые.
В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).
В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.
Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.
К основным видам аккумуляторов относятся:
- свинцово-кислотные;
- никель-кадмиевые щелочные;
- литий-ионные.
Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).
Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.
В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.
Современные химические источники тока и их применение
Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда. В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами. В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике. Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.
Немного истории создания ХИТ
Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.
Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.
Принцип действия
Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:
- Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
- Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
- Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
- Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.
Вам это будет интересно Средства защиты от статического электричества
Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства
Источник стабильного тока от 5 мкА до 20 мА
Источник стабильного тока понадобился автору для отладки схем на биполярных транзисторах, которые, как известно, управляются током
Важное требование к нему — изоляция общего провода прибора от общего провода отлаживаемого устройства, поэтому источник питания пришлось взять автономный. Встроенный четырёхразрядный микроамперметр с автоматическим переключением пределов позволяет немного уменьшить количество аппаратуры, одновременно размещаемой на столе экспериментатора
Идея схемы взята отсюда. Собственно источник стабильного тока устроен так:
Сопротивление резистора R1 некритично, нужно только, чтобы ток базы транзистора Т1 полностью открывал его. Коэффициент передачи тока транзистора BC559C — около 500, верхний предел регулировки тока у источника — 20 мА, значит, 200 мкА через базу — более чем достаточно. Резистор в 10 кОм обеспечит около 1 мА при 10 В, в принципе, можно увеличить его даже до 50 кОм.
Транзисторы Т1 и Т2 должны быть одинаковыми, но при больших токах параметры Т1 всё равно будут немного «уплывать» из-за небольшого нагрева.
Ток, подаваемый устройством во внешнюю цепь, определяется суммарным сопротивлением резисторов R3 — R5. Их функции: R3 — ограничение тока в случае, если оба переменных резистора вывернуты «в нуль», R4 — точная регулировка тока, R5 — грубая. Ток рассчитывается по формуле I=0.7/(R3+R4+R5), поэтому, например, если резистор R3 взять сопротивлением в 27 Ом, верхний предел регулировки тока составит 0.7/27=25,9мА. На практике получилось 21,6 мА, поскольку падение напряжения на транзисторе Т2 оказалось меньше — около 0,6 В.
Полная схема устройства:
«Крона» питает источник стабильного тока, два элемента ААА — четырёхразрядный микроамперметр. Поэтому выключатель питания взят с двумя нормально разомкнутыми группами контактов. Переключатель S1 позволяет отключить верхнюю клемму и замкнуть источник тока накоротко, чтобы настроить его заранее, до подключения к отлаживаемой схеме.
Параметры на практике получились следующими: максимальный ток — 21,6 мА, максимальный ток при «грубом» регуляторе, вывернутом «в нуль» — 0,3 мА, минимальный — 4,7 мкА. Правда, встроенный микроамперметр меньше 10 мкА не показывает, поэтому внешний иногда может и потребоваться. Выставленный ток остаётся практически неизменным при изменении напряжения на внешней цепи от 0 до 8 В.
Микроамперметр сделан из мультиметра с автоматическим переключением пределов JT-033A фирмы SHENZHEN JINGTENGWEI INDUSTRY CO.,LTD: переключатель режимов удалён, вместо него впаяны перемычки, заставляющие его всегда работать в режиме измерения тока.
Расположение компонентов в корпусе следующее:
Jim сделал симуляцию схемы в Falstad, автор её немного переработал для отображения большего количества параметров, получилось: $ 1 0.000005 7.619785657297057 65 5 50 t 224 240 176 240 0 -1 0.6771607865907852 -0.5873050244463638 500 t 256 272 304 272 0 -1 1.8738439949380101 -0.6771607865907852 500 r 176 304 176 400 0 10000 v 80 288 80 192 0 0 40 9 0 0 0.5 w 176 304 176 272 3 w 176 272 176 256 0 w 176 224 176 32 1 w 0 w 80 32 80 192 0 w 80 288 80 400 0 w 80 400 176 400 3 w 176 400 304 400 0 w 304 336 304 288 3 w 304 240 224 240 1 174 304 128 352 48 0 5000 0.9950000000000001 Resistance w 176 32 304 32 2 w 304 256 304 240 0 w 304 240 304 208 2 w 304 128 336 128 0 w 352 80 352 128 0 w 352 128 336 128 0 w 256 272 176 272 1 w 304 128 304 208 1 r 304 336 304 400 0 250 Результат симуляции: А вот результат симуляции при сопротивлении резистора R1 в 100 кОм:
Что такое электростанция
Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей.
Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:
- Обеспечение стабильной продолжительной работы параллельно с другими энергетическими системами, снабжение энергией собственных автономных нагрузок.
- Возможность мгновенного реагирование на наличие или отсутствие нагрузки, соответствующей его номиналу.
- Выполняет запуск двигателя, обеспечивающего работу всей станции.
- Вместе со специальными устройствами осуществляет функцию защиты.
Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.
В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.
Механические источники постоянного тока
Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.
Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:
- однополупериодые выпрямители;
- двухполупериодные выпрямители.
В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.
Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.
Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.
Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.
Сравнение источников
Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.
Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.
Советы по эксплуатации аккумуляторов
А теперь самые простые советы, которые помогут прослужить вашим аккумуляторам максимально долго.
- Берегите элементы питания от огня и воды – оба фактора чреваты выходом из строя.
- Чрезмерное охлаждение и нагревание, а также резкая смена температур тоже губительны.
- Применяйте соответствующий вашему аккумулятору тип зарядки, коих есть аж 4 штуки.
- Первый – это медленный заряд низким постоянным током. Происходит он в течение довольно длительного времени – до 18 часов. Такой метод подходит почти для всех аккумуляторов и является самым безопасным.
- Второй – быстрый заряд. Происходит в течение 3-5 часов при постоянном токе в 1/3С.
- Третий – дельта V заряд (ускоренный) — начальные ток равен номинальной емкости элемента, напряжение постоянно меняется. Заряд происходит за 1-1,5 часа. При этом возможен перегрев и разрушение устройства.
- Четвертый тип называется реверсивным. При нем длинные импульсы заряда сменяются короткими импульсами разряда. Такой метод наиболее полезен для аккумуляторов с «эффектом памяти».
На этом закончим наш обзор. Мы разобрали электрохимические источники тока и получили простейшее представление об их работе. Если вы хотите изучить тему глубже, то уже не обойтись без учебных пособий и видео, которые можно легко отыскать в сети.
Книги
Нормативные правовые актыОбщественные и гуманитарные наукиРелигия. Оккультизм. ЭзотерикаОхрана труда, обеспечение безопасностиСанПины, СП, МУ, МР, ГНПодарочные книгиПутешествия. Отдых. Хобби. СпортНаука. Техника. МедицинаКосмосРостехнадзорИскусство. Культура. ФилологияДругоеКниги издательства «Комсомольская правда»Книги в электронном видеКомпьютеры и интернетБукинистическая литератураСНиП, СП, СО,СТО, РД, НП, ПБ, МДК, МДС, ВСНГОСТы, ОСТыЭнциклопедии, справочники, словариДомашний кругДетская литератураУчебный годСборники рецептур блюд для предприятий общественного питанияЭкономическая литератураХудожественная литература
Химические источники электрического тока
Химические источники тока – это устройства, работа которых обусловлена преобразованием выделяемой при окислительно-восстановительном процессе химической энергии в энергию электрическую.
К преимуществам химических источников тока относится универсальность их применения.
Источником питания многих бытовых устройств, а также приборов, используемых в научных лабораториях или на производстве, являются именно химические источники питания.
Востребованность химических источников тока в обеспечении функционирования аппаратуры связи или портативной электронной аппаратуры заслуживает особого внимания, так как в этом случае они являются незаменимыми.
Химические источники электротока
Конструктивно химические источники тока представляют собой два металлических электрода, разделенных электролитом. Электроды изготавливаются из металла, который является проводником электронов (электронная проводимость), а электролит изготавливается из жидкого или твердого вещества, являющегося проводником ионов (ионная проводимость).
Если для питания, какого либо потребителя, требуется высокое напряжение, то электрические аккумуляторы соединяются последовательно. В случае, когда для электропитания требуется большой ток, электрические аккумуляторы соединяются параллельно и носят название аккумуляторной батареи.
Советуем изучить Термосопротивление
Последовательное соединение (согласное включение)
Еобщ = Е1 + Е2 + Е3
Смешанное соединение (встречное)
Еобщ = Е1 – Е2 + Е3
- Параллельное соединение источников питания. ( Такое соединение применяется
- для увеличения тока в цепи. )
Еобщ = Е1 = Е2 = Е3
В зависимости от характера работы различные типы химических источников питания носят название гальванических элементов либо электрических аккумуляторов.
К отличительной особенности химических источников тока, называемых гальваническими элементами, относится возможность одноразового применения, так как их выделяющие электрическую энергию активные вещества подлежат полному распаду в процессе химической реакции. При полном разряде гальванического элемента его дальнейшее применение невозможно.
Особенностью таких химических источников тока, как электрические аккумуляторы, является их многоразовое использование за счет обратимости основных действующих процессов.
Разряженный электрический аккумулятор обладает способностью регенерировать свои дающие электрическую энергию активные вещества за счет процесса пропускания через него постоянного тока, источником которого служит другое устройство.
При заряде электрического аккумулятора постоянный тока другого источника должен протекать в направлении, противоположном разрядному току. Такое условие способствует замене реакции окисления на реакцию восстановления на положительном электроде, и наоборот, на отрицательном электроде реакция окисления заменяется на реакцию восстановления.
К химическим источникам тока предъявляется ряд общих и специальных технических требований. Все требования оговорены в соответствующей нормативной документации.
Общими являются требования: к габаритно-массовым характеристикам; к надежности; к отсутствию вредного влияния на окружающую среду; к безопасному использованию обслуживающим персоналом; к сроку службы; к минимальному саморазряду.
Специальными техническими условиями являются требования к удельным характеристикам, к механической прочности, к температурному диапазону рабочего режима, к невысокому значению внутреннего сопротивления, к работоспособности в любом положении, к удобству в эксплуатации.
Что такое источники тока
Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.
Прибор для выработки тока
Различают идеальные и реальные устройства для выработки тока:
- Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
- Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.
Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный
Источники постоянного электрического тока
Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:
- механические, превращающие механическую энергию вращения ротора в электрическую энергию;
- тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
- химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
- световые, превращающие энергию солнечного света в электрическую энергию.
В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.
Магнитное действие тока
Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).
На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.
Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).
Рис. 5. Вокруг проводника с током возникает магнитное поле, благодаря этому проводник взаимодействует с магнитом
Почему проводок с током взаимодействует с магнитом
Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.
Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.
При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.
Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.
На магнитном действии тока основано действие электромагнита.
Самодельный электромагнит
Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.
Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.
Рис. 6. Из подручных материалов можно изготовить самодельный электромагнит
Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.
Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.
Обозначение источников тока
Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:
Обозначения
На каждой схеме условных обозначений можно увидеть следующие параметры:
- Общее обозначение источника тока и движущей силы ЭДС;
- Графическое изображение без ЭДС;
- Химический тип;
- Батарея;
- Постоянное напряжение;
- Переменное напряжение;
- Генератор.
Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.