Схемы и нюансы подключения светодиодных светильников к сети 220 в

Светодиоды с магнитными драйверами

Подключаются светодиоды с магнитными драйверами, как правило, в последовательном порядке

На первом этапе очень важно оценить их мощность. Дополнительно следует учитывать параметр отрицательного сопротивления в цепи

Если рассматривать маломощные модели, то они соединяются с блоками питания через усилитель. В противном случае лучше использовать сетевые фильтры.

При этом поглотительные модификации могут привести к магнитным помехам. Как решить проблемы с повышенной частотностью в данном случае? Специалисты рекомендуют использовать одноканальные резисторы. При этом модуляторы для схемы можно подбирать самые разнообразные.

В чем сложность подключения светодиода от сети своими руками?

При самостоятельном подсоединении, необходимо грамотно подойти к составлению электрической цепи

Важно учитывать следующие моменты:

  • чтобы LED-элемент не сгорел, нужно сдерживать поступление прямого тока;
  • нельзя допускать резкого увеличения обратного тока при достижении обратным напряжением определенного уровня.

Кроме того, важно помнить, что драйвер подает постоянный ток с относительно слабым напряжением. В отличие от него, напряжение сети достаточно высокое – 220В. Также оно обладает переменной частотой в 50 Гц

Также оно обладает переменной частотой в 50 Гц.

Так как LED пропускает электричество только в одну сторону, он будет светиться на определенных полуволнах. Другими словами, свет будет постоянно мигать. Для человеческого глаза такое мерцание практически незаметно, однако оно повлияет на срок службы индикатора.

Схема подсветки выключателя на светодиоде и сопротивлении

В настоящее время в выключатели для подсветки устанавливаются, как правило, светодиоды, включенные в выключателе по нижеприведенной электрической схеме.

Когда выключатель находится в положении «Выключено» ток проходит через сопротивление R1, далее через светодиод VD2, который светится. Диод VD1 защищает VD2 от пробоя обратным напряжением. R1 любого типа мощностью более 1 Вт, номиналом от 100 до 150 кОм. При указанном на схеме номинале R1, ток протекает около 3 мА, что вполне достаточно для хорошо заметного свечения в темноте. Если же свечение светодиода будет недостаточным, то величину сопротивления нужно уменьшить. VD1 любого типа, VD2 любого типа и цвета свечения. Для того, чтобы разобраться в теории и самостоятельно рассчитать величину и мощность резистора то нужно ознакомившись со статьей «Закон силы тока».

Схему подсветки выключателя на светодиоде можно устанавливать, если в светильнике используется лампочки накаливания. Если стоят компактные люминесцентные (энергосберегающие), то не исключено, что в темноте Вы можете заметить их слабое свечение или мигание. Если в светильнике установлены светодиодные лампочки, то подсветка, сделанная по этой схеме может даже не работать, так как сопротивление светодиодной лампочки очень большее и ток достаточной силы для свечения светодиода может не создаться. В темноте возможно слабое свечение светодиодной лампочки. Схема очень простая, но имеет большой недостаток, потребляет много электроэнергии, около 1 кВт×часа в месяц. Вот так выглядит смонтированная схема.

Осталось только подсоединить к клеммам выключателя концы, которые смотрят вниз. Если Вы не допустили ошибки при монтаже, то схема сразу заработает. Я специально выложил фото на скрутках для тех, у кого нет возможности пропаять соединения паяльником. Для надежности и безопасности нужно все же пропаять скрутки и покрыть изолентой голые провода и резистор.

Достоинства и недостатки ленты 220 В

Светодиодные ленты с прямым
питанием от 220 В имеют важные преимущества:

  • не требуют использования блока питания;
  • способны обеспечивать световое оформление
    участков большой длины;
  • относительно недороги и доступны;
  • демонстрируют хорошую работу в условиях улицы,
    особенно при низких температурах воздуха.

Говоря о
достоинствах LED лент на 220 В, следует упомянуть и о недостатках. Их немало:

большая протяженность ленты не только важное
достоинство, но иногда серьезный недостаток. Подсветить небольшой отрезок таким
устройством не удастся;
ленты, предназначенные для питания от 220 В, не
имеют липкого слоя, что несколько усложняет монтаж;
простота подключения имеет оборотную
сторону — отсутствие гальванической развязки ленты, которая становится
опасной и требует надежной изоляции всех соединений. Кроме того, для исключения
опасности поражения электротоком необходима защита не ниже IP67;
нагрев светодиодов достаточно велик, а
возможности теплоотведения у них практически нет

Обычно такие ленты хорошо
защищены от внешних воздействий, но, с увеличением надежности защиты резко
уменьшается возможность охлаждения. Это является причиной использования
преимущественно
в уличных условиях;
выпрямитель, имеющийся в стандартном проводе
питания, не имеет сглаживающего конденсатора. Это делается из соображений
компактности, но в результате светодиоды при включении начинают мерцать с
частотой 100 раз в секунду (100 Гц). это не заметно невооруженным глазом, но
человеческий мозг способен воспринимать мерцание такой частоты. Оно оказывает
отрицательное воздействие, по санитарным нормам от него следует избавляться;
подобные светильники недороги, что означает использование
материалов низкого качества. Силикон, которым покрыта лента для защиты от
влаги, издает заметный запах, который усиливается при нагреве. Это является еще
одной причиной преимущественного использования на улице.

Кроме того, для исключения
опасности поражения электротоком необходима защита не ниже IP67;
нагрев светодиодов достаточно велик, а
возможности теплоотведения у них практически нет. Обычно такие ленты хорошо
защищены от внешних воздействий, но, с увеличением надежности защиты резко
уменьшается возможность охлаждения. Это является причиной использования
преимущественно в уличных условиях;
выпрямитель, имеющийся в стандартном проводе
питания, не имеет сглаживающего конденсатора. Это делается из соображений
компактности, но в результате светодиоды при включении начинают мерцать с
частотой 100 раз в секунду (100 Гц). это не заметно невооруженным глазом, но
человеческий мозг способен воспринимать мерцание такой частоты. Оно оказывает
отрицательное воздействие, по санитарным нормам от него следует избавляться;
подобные светильники недороги, что означает использование
материалов низкого качества. Силикон, которым покрыта лента для защиты от
влаги, издает заметный запах, который усиливается при нагреве. Это является еще
одной причиной преимущественного использования на улице.

Количество недостатков превосходит достоинства, но это не настолько страшно, как может показаться. Назначение светодиодных лент на 220 В — подсветка наружных конструкций значительной протяженности. Некоторые из минусов ленты таким образом попросту нивелируются — например, нагрев или запах силиконового покрытия. Мерцание также мало влияет на органы восприятия людей, поскольку подобную подсветку никто не рассматривает подолгу.

Заметным недостатком можно считать невозможность прямого подключения RGB светильников. Каждый из них фактически представляет собой три ленты, нуждающиеся в обособленном питании. Световые эффекты, демонстрируемые разноцветными конструкциями, управляются контроллером, который параллельно является блоком питания.

Обойтись без него нельзя — будет гореть либо только один цвет, либо сразу все три. Кроме того, размер RGB лент не превышает 5 м, что для уличных инсталляций слишком мало.

Подключение к сети на 12 В

Подключение светодиодов к 12 вольт может осуществляться как в последовательном, так и в параллельном порядке. Если рассматривать первый вариант, то блоки питания целесообразнее подбирать импульсного типа. Также следует знать, что выполнить подключение светодиодов к 12 вольт можно без усилителей. Однако если устанавливается более трех штук, то их предусмотреть необходимо. Модели с резонансными драйверами должны соединяться только с низкоомными усилителями.

Если рассматривать параллельное подключение светодиодов, то в данном случае для цепи важно подобрать два резистора открытого типа. При этом первый из них должен устанавливаться перед усилителем

Пропускная способность тока у него обязана быть не ниже 3 А.. При этом параметр порогового напряжения в устройстве не должен допускаться ниже уровня 4 А. Как правило, отрицательное сопротивление у моделей данного типа небольшое. При этом сохранение линейности достигается за счет использования качественных драйверов.

Устройство светодиодной лампочки на 220 Вольт

Самостоятельный ремонт светодиодной лампочки возможен, только если вы представляете себе из каких деталей она состоит и как все это работает. Это позволит самому искать неисправности. Устройство LED лампочки не слишком сложное. Если смотреть снаружи, можно выделить три части:

  • пластиковый или стеклянный светорассеиватель,
  • металлический, пластиковый или керамический радиатор для отвода тепла,
  • цоколь одного из стандартов.

Чтобы отремонтировать светодиодную лампочку своими руками, надо будет добраться до внутренностей — все проблемы сконцентрированы тут.

Составные части светодиодной лампы

Если разобрать LED лампу, внутри обнаружим электрическую часть, где и будем искать повреждения. Это:

  • Преобразователь/стабилизатор напряжения или драйвер. Находится наполовину в цоколе, наполовину в радиаторе теплоотвода.
  • Плата со светодиодами.

Как видите, не слишком сложно, хотя вариаций море. Например, в некоторых моделях драйвер распаян на той же плате, где крепятся светодиоды. Это «эконом» решение и встречается обычно в дешевых лампочках. В других светодиод один. Это, наоборот, дорогие модели, так как один большой и мощный светодиод стоит значительно больше, чем куча маленьких с той же (или большей) мощностью свечения.

Варианты подключения через трансформатор к 220 В

Главной причиной того, почему нельзя напрямую организовать подключение светодиодной ленты к общей сети 220V является высокий ток, который при этом проходит через них. Как результат, можно получить местный перегрев и выход из строя полупроводниковых элементов.

Классическим способом подсоединения 12-вольтовой ленты к 220В является использование вводного трансформатора или блока питания. Его главная задача – понижение сетевого напряжения 220 В до рабочего 12/24 В. Но прежде чем подключить к нему ленту, нужно подобрать его тип и мощность. Тип блока зависит от условий эксплуатации ленты и может быть простым, либо герметичным (при повышенной влажности в зоне действия). Мощность нужно подбирать учетом удельной (погонной) мощности ленты, которая является одной из ключевых ее характеристик. Если, к примеру, погонный метр ленты потребляет 14 Вт мощности, то отрезок длиной 4 м будет нуждаться в 56 Вт. Кроме это следует учесть запас примерно 25…30%, после которого минимальная требуемая мощность трансформатора составит 70…72,8 Вт. Из каталогов подбирается блок с ближайшим большим значением мощности, учитывая рабочее напряжение светодиодов (12 или 24 Вольт).

Подробнее о расчетах мощности светодиодных лент можно прочитать здесь.

https://youtube.com/watch?v=A1TKCAYn-0U

Для дома схема подключения светодиодной ленты выбирается исходя из типа осветителя и его длины. Простая монохромная лента менее 5 метров соединяется с блоком питания, а он – с сетью 220 Вольт. Со стороны осветителя необходимо соблюдать полярность: «+» к «+», а «–» к «–». Для соединения используется двухжильный провод, который в блоке зажимается на клеммах, а к ленте припаивается на соответствующих контактах. На примере с RGB осветителем между блоком и лентой придется своими руками включить 12-вольтовый контроллер, позволяющий настраивать цветовую гамму свечения. Здесь также придется соблюдать полярность, а также соответствие контактов цветовых дорожек.

Схемы, приведенные выше, являются базовыми и применимы для лент стандартных пятиметровых лент (или короче) дома, при включении в цепь датчика движения или без него. При необходимости включить в сеть 220 Вольт более 5 м осветителя переходят к параллельному соединению. Последовательное не используется по причине чрезмерного падения напряжения по длине. Здесь возможны два варианта:

Для подключения светодиодной ленты RGB придется включить в цепь контроллер, а при двухблочной схеме – дополнительный усилитель, на который подключается параллельная лента.

Использование указателей напряжения

Применение отверток индикаторов предоставляет возможность найти фазный провод, ноль и землю в розетках, выключателях, осветительных приборах, убедиться в наличии напряжения в электрической сети, выявить пробои напряжения на корпус бытовой техники, а также обнаружить проводку в стенах под плиткой или слоем штукатурки с финишным отделочным покрытием. Работа с тестерами начинается после их проверки. Испытание выполняется на участке с напряжением. О его наличии в сети укажет световой сигнал неоновой или светодиодной индикаторной лампы. После проверки пригодности прибора осуществляется устранение поломок и неисправностей электрических сетей, бытовой техники, осветительных приборов. К основным видам работ с применением тестеров напряжения, относятся:

  1. Поиск фазы и ноля необходим при отсутствии маркировки электрических проводов. Работа начинается с отключения автомата на вводном щитке, от которого происходит питание электросети на месте проверки. После зачистки проверяемых проводов и последующего разведения их друг от друга на безопасное расстояние, исключающее возможность короткого замыкания или поражение человека электрическим током, приступают к идентификации фазного кабеля. Если после включения электрического тока и прикосновения индикатора напряжения к зачищенному концу провода будет гореть лампа, то этот проводник является фазным. Второй провод — это нуль. В случае, если индикаторная лампа не горит, то, значит, первый проводник без напряжения. Второй провод можно считать фазой, в чем обязательно надо убедится с помощью индикатора.
  2. Определение утечки напряжения на корпус электрического прибора предусматривает простое прикосновение жала индикаторной отвертки к металлической (неокрашенной) его части. Появление светящейся лампы на индикаторе после включения бытовой техники в сеть указывает на наличие фазы на корпусе прибора, а также необходимость срочного устранения этой проблемы. Яркое свечение индикаторной отвертки свидетельствует о прямом контакте фазной жилы кабеля с корпусом электроприбора, прикосновение к которому может стать причиной поражения электрическим током.
  3. Проверка качества проводимости цепи осуществляется путем прикосновения зачищенных от изоляции концов провода к жалу и пальцевому контакту индикатора. Звуковой сигнал или светящаяся лампа показывает на отсутствие проблем с целостностью проводника.
  4. Выявление скрытой проводки в стенах основано на появлении светового или звукового сигнала индикатора напряжения в зоне электромагнитного поля, создаваемого кабелем, подключенным к питанию сети. Его границы будут определяться путем медленного передвижения индикаторной отвертки по стене в разных направлениях.Срабатывание звукового или светового сигнала указывает на месторасположение токопроводящей проводки под слоем штукатурки, финишного отделочного покрытия.
  5. Нахождение обрыва проводов основано на прекращении функционирования отверток индикаторов. В местах повреждения пробник напряжения не будет светиться, издавать звуковые сигналы. Его работа будет остановлена.
    Применение индикаторных отверток является обязательным условием при проведении ремонтных работ, связанных с напряжением. Правильное их использование является залогом безопасности, исключающим риск поражения электрическим током.

Изготовление драйвера светодиодов на 220В своими руками

Для изготовления
самодельного драйвера своими руками потребуются радиодетали для создания трех
взаимодействующих сегментов:

  1. Делитель
    напряжения, основанный на емкостном сопротивлении.
  2. Мост из диодов.
  3. Стабилизатор.

Кроме того, понадобятся
следующие инструменты, приборы и расходники:

  1. Паяльная станция мощностью около 30 Вт.
  2. Нейтральный флюс.
  3. Припой оловянно-свинцового состава.
  4. Пассатижи для загиба выводов.
  5. Кусачки для отреза проводки.
  6. Многожильные медные проводники в изоляции сечением от 0,35 до 1 мм2.
  7. Прибор для контрольного измерения (мультиметр).
  8. Изолента/трубка термоусадочная.
  9. Монтажная макетная плата на базе текстолита.

Инструкция по сборке драйвера своими
руками

Инструкция по
изготовлению своими руками драйвера светодиода с питанием от 220 В включает
следующие действия:

  1. Подготавливается макетная плата необходимого размера.
  2. Сначала припаиваются крупные компоненты цепи.
  3. Затем поочередно в соответствии со схемой монтируются мелкие элементы – резисторы, диоды, конденсаторы.
  4. В последнюю очередь устанавливаются транзисторы и переменный резистор.
  5. Распределение компонентов должно быть таким, чтобы расстояние между ними было как можно меньше.
  6. Соединение диодов происходит с учетом полярности (для транзисторов – по распиновке).
  7. По завершении сборки схему нужно подключить и провести замеры мультиметром.

Создание драйвера для
светильника из светодиодов для подключения их к питанию на 220 В доступно
своими руками любому желающему, имеющему опыт работы с радиокомпонентами. В
ходе сборки не потребуется особых оборудования и материалов – все инструменты и
детали можно приобрести в специализированных магазинах. К тому же, при
правильном подходе и качественных составляющих собранная схема обеспечит
стабильность и долговечность прибору освещения не хуже покупного аналога.

Схема

Предложенная ниже схема
драйвера представляет собой совокупность трех последовательно взаимодействующих
между собой каскадов:

  1. Первая область
    отвечает за понижение амплитуды напряжения. В основе лежит емкостный керамический
    конденсатор (500 вольт) с резистором для самозарядки первого. Его номинал может
    варьироваться в широких пределах – от 100 до 1000 кОм и от 500 до 1000 мВт.
    Принцип действия его основан на том, что он пропускает ток до полной зарядки
    обкладок. При емкости в 0,3 мкФ это время составит всего десятую часть период
    полуволны 220 В – то есть всего 1/10 поступающего напряжения.
  2. Второй сегмент
    выполняет роль выпрямления тока из переменного в постоянный. Это цепь диодных
    полярно соединенных элементов. В данной цепи на выходе его номинал составит
    порядка 24 В (с учетом деления в предыдущем блоке).
  3. Заключительный
    элемент сглаживает и стабилизирует электроток. Для цели сглаживания применяется
    параллельно подключенный конденсатор электролитической модификации (емкость
    определяется мощностью нагрузки). Стабилизатором напряжения в предложенной
    схеме выступает модуль L7812.

Конденсатор в сочетании с диодным мостиком выполняет задачу делителя напряжения, поэтому если входное напряжение будет меняться, соответственно иное значение его получится и на выходе.

Компоненты

Для сборки своими
руками предложенной выше схемы драйвера для светодиодов, питание которых
осуществляется от 220В, потребуется следующий набор радиокомпонентов:

  1. Светодиоды 12 штук с параметрами – 3,3 вольта 1 ватт (для сборки своими руками лэд-лампы питанием от 220 В).
  2. Конденсатор керамического типа – 0,3 мкФ, 500 вольт – 1 штука.
  3. Резисторный модуль – от 0,5 до 1 Ом и 0,5-1 Вт – 1 экземпляр.
  4. Четыре диода по 100 В каждый.
  5. Пара конденсаторов электролитического типа на 16 вольт 100 и 330 мкФ.
  6. 12-вольтовый стабилизатор напряжения модели L7812, либо его аналог.

Вариант драйвера без стабилизатора тока

Рассмотрим схему
подключения драйвера без блока стабилизатора. Как известно, отсутствие
трансформатора в подобном приборе приводит к пульсации напряжения и,
соответственно, яркости свечения светодиодов. Лишь частично эту проблему
устраняет идущий после диодного мостика конденсатор. Однако пульсировать
амплитуда все же будет – в рамках 2-3 вольт.

Вариант со
стабилизатором на 12 вольт решают эту задачу полностью, поэтому и
смонтированный своими руками такой драйвер по степени пульсации амплитуды
напряжения не будет уступать покупным дорогим аналогам.

Расчет светодиодов — ограничительный резистор в цепи LED-диодов

Расчет светодиодов — LED-диод, это неотъемлимый элемент современной электроники, который используется практически во всех радиоэлектронных устройствах. Принцип его работы следующий: при подачи на него определенного значения постоянного тока, прибор начинает светится.

Существуют светодиоды различных цветов свечения, которое обусловливается применяемым материалом для его изготовления.

Специфика включения светодиодного прибора

Вольт-Амперная характеристика у светодиода аналогична той, которую имеет стандартный диод полупроводникового типа. Вместе с тем, когда в цепи светодиода возрастает напряжение прямой направленности, идущий через него ток стремительно увеличивается. Взять для примера фирменный светодиод зеленого свечения, то если подавать на него прямое напряжение в диапазоне от 1.8v до 2v, ток может увеличиться в пять раз, то есть составит 10мА.

Следовательно, включение светодиода по схеме прямой направленности напряжения, даже при незначительном увеличении напряжения, постоянный ток может повысится до критической величины. А при возрастании тока до пикового значении, чревато выходом из строя светодиода.

Поэтому, что бы предохранить данный полупроводниковый прибор от возможного пробоя, подавать на него напряжение необходимо от стабилизированного источника тока, то есть — драйвера.

В случае, если цепь со стабилизированным напряжением в схеме отсутствует, тогда для защиты светодиода применяется постоянный резистор в качестве ограничивающего ток сопротивления. Такой гасящий резистор включается последовательно в цепь светодиода. Чтобы точно определить номинальное значение такого резистора, нужно воспользоваться ниже приведенной формулой:

Это популярный в радиоэлектронике закон Ома, с помощью которого можно легко определить номинальное значение сопротивления на определенном участке электрического тракта.

В общем, принцип расчета сопротивления такой: определяем требуемую величину рабочего тока прибора — Iсв и номинальное напряжение для его работы — Uсв. При этом нужно учитывать постоянное напряжение, от которого питается вся схема — Uпит, далее уже высчитывается номинальное значение ограничительного сопротивления — Rогр:

Коэффициент 0,75 в этом случае применяется для сохранения определенного запаса.

Получив номинальное значение сопротивления, теперь необходимо найти наиболее приближенный к нему номинал постоянного резистора.

Теперь нужно определить мощность рассеивания гасящего резистора:

Узнав мощность рассеивания ограничительного резистора, теперь нужно найти компонент с предельно допустимыми параметрами.

Включение светодиодов по параллельной и последовательной схеме

Используя параллельное включение LED-источника, следует помнить, что в случае задействования только одного гасящего сопротивления может привести к его перегреву.

Применяя схему параллельного включения LED-приборов, необходимо в разрыв цепи диода всегда устанавливать свой, персональный резистор ограничения тока. Способ расчета номинальной мощности и сопротивления этого резистора высчитывается аналогичным методом, приведенным выше. Используя схему последовательного включения, цепь желательно составлять из идентичных друг другу приборов.

Помимо этого, нужно взять во внимание то, что действующее в схеме напряжение должно составлять немногим большее значение, чем потребляющее всеми LED-диодами одновременно

Вычисление номинала ограничительного резистора для использования в схеме последовательного соединения, производится таким же образом, как показано выше. Хотя, есть некоторое исключение, состоящее в том, что при подсчете, взамен значения Uсв применяется значение Uсв*N. В приведенном примере буква N означает число соединенных в цепь LED-приборов.

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;) Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Онлайн калькулятор для расчета номинала и мощности токоограничивающего резистора
Напряжение источника питания U, В:
Напряжение падения на одном LED, В:
Кол-во последовательно включенных LED, шт:
Максимально допустимый ток через LED, мА:

Выключатель с индикатором включения

Выключатели с индикаторами отличаются от светодиодных совершенно другим принципом использования — лампа в них загорается тогда, когда включено освещение. Основное назначение контрольной лампы — сигнализировать о включенном освещении в подвале, на чердаке, в кладовой или на улице.

Используется для контроля расхода электроэнергии. Индикатор может устанавливаться для каждой из клавиш или только для одной из них.

Схема подключения и работы выключателя с функцией подсветки выстроена по следующему принципу. Контрольная лампа параллельно подключается к клеммам выключателя. Когда цепь замыкается, ток проходит через индикатор и осветительный прибор — оба загораются. Если выключатель выключен, ток не поступает ни к индикатору, ни к лампе.

Индикация включенного освещения может быть выполнена в комбинации: 1 контрольная лампа на одну клавишу или для каждой клавиши по одной лампе (+)

Где взять неоновую лампочку

Неоновые газоразрядные лампочки (неонки) представлены широким рядом и можно использовать любую доступную из них

Обратите внимание, слева на фото газоразрядная лампочка с резистором номиналом 200 кОм, вынутая из вышедшего из строя выключателя компьютерного удлинителя, которые еще называют Пилот. Ее с успехом можно монтировать в любой выключатель без дополнительных хлопот по поиску комплектующих

Такие же лампочки с резистором устанавливают в электрочайниках, и других электроприборах для индикации включенного состояния. По центру фотоснимка неожиданно оказался Малогабаритный Тиратрон (триод) с Холодным катодом МТХ-90. Справедливости ради скажу, что тиратрон МТХ-90 в моём бра светит не один десяток лет.

Неоновые лампочки (неонки) окружают нас практически везде. В удивлены? Во всех старых светильниках с лампами дневного света используется стартер, это настоящая неоновая лампочка, помещенная в цилиндрический корпус. Для того, чтобы его извлечь из корпуса светильника, нужно цилиндр немного повернуть против часовой стрелки. Сколько в светильнике ламп дневного света, столько и стартеров. В стартере параллельно неоновой лампочке еще подключен конденсатор, он служит для подавления помех и при изготовлении индикатора не нужен.

Если стартер взят от старого светильника, прежде чем применить неоновую лампочку, не поленитесь проверить ее. Надо до монтажа подключить лампочку по вышеприведенной схеме. Лучше неонку брать из нового стартера, так как в старых стекло колбы лампочки изнутри, как правило, покрывается темным налетом и будет хуже видно свечение. Лампочка из стартера может быть с успехом использована при самостоятельном изготовлении индикатора фазы.

Готовый комплект подсветки для установки в настенный выключатель можно взять из неисправного современного электрического чайника. Как правило, в большинстве моделей имеется индикатор нагрева воды. Индикатор представляет собой неоновую лампочку, с которой последовательно включен токоограничивающий резистор и эта цепь включена параллельно ТЭНу. Если в Вашем хозяйстве завалялся неисправный электрический чайник, то неоновую лампочку с резистором можно извлечь из него и вмонтировать в выключатель.

На фотографии три неоновых лампочки от электрических чайников. Как видно светят они довольно ярко, поэтому в темноте будут в выключателе видны с большого расстояния.

Если внимательно присмотреться к изолирующим трубкам, надетым на места соединения выводов неоновой лампочки с проводами, то можно заметить на одной из трубок утолщение. В этом месте находится токоограничивающий резистор. Если трубку разрезать вдоль, то откроется картина, как на этой фотографии.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: