Как выбирать и подключить сенсорный выключатель света

Конденсаторы могут быть сенсорными

В течение последнего десятилетия или около того стало действительно трудно представить себе мир с электроникой без сенсорных датчиков прикосновений. Смартфоны являются тому наиболее заметным и распространенным примером, но, конечно, существуют и другие многочисленные устройства и системы, которые обладают датчиками прикосновений. Для построения сенсорных датчиков прикосновений могут использоваться и емкость, и сопротивление; в данной статье мы будем обсуждать только емкостные датчики, которые более предпочтительны в реализации.

Хотя применения, основанные на емкостных датчиках, могут быть довольно сложными, фундаментальные принципы, лежащие в основе данной технологии, достаточно просты. На самом деле, если вы понимаете суть емкости и факторы, которые определяют емкость конкретного конденсатора, вы стоите на правильном пути в понимании работы емкостных сенсорных датчиков прикосновения.

Емкостные сенсорные датчики касания делятся на две основные категории: на основе взаимной емкости и на основе собственной емкости. Первый из них, в котором конденсатор датчика состоит из двух выводов, которые действуют как излучающий и приемный электроды, является более предпочтительным для сенсорных дисплеев. Последний, в котором один вывод конденсатора датчика подключен к земле, является прямым подходом, который подходит для сенсорной кнопки, слайдера или колеса. В данной статье мы рассмотрим датчики на основе собственной емкости.

Сенсорное управление

Это разновидность электронного режима. Нужные параметры и программы вводятся только с помощью сенсорных кнопок.

Среди пользователей по популярности идут следующие модели управления:

  1. Электромеханические.
  2. Сенсорные.
  3. Механические.

Автоматические и пользовательские программы управления

 Регулируют режимы духового шкафа с помощью набора команд, входящих в программы управления. Хозяйке нужно только менять параметры режима работы в процессе готовки  — влажность, температуру, скорость вентилятора.

Автоматические программы

производители разрабатывают такие программы для максимального упрощения приготовления всем известных кушаний; хозяйке достаточно лишь выбрать блюдо. При этом иногда приходится устанавливать вес, интенсивность нагрева и др.; все остальное сделает программа: включит нужные режимы, рассчитает время, задаст параметры и оповестит, когда будет все готово (просто космос какой-то!).

Ваши собственные пользовательские программы

понадобятся, когда в списке стандартных программ нужное блюдо отсутствует; хозяйка сама задает последовательность и время действия режимов; агрегат сохранит в памяти алгоритм приготовления блюда. Когда вам снова захочется съесть это кушанье, он активирует записанную последовательность.

ВАЖНО! Пользовательские и встроенные программы наличествуют только в духовых шкафах с сенсорным и электронным управлением

5.3 Емкостные сенсоры

Не менее широко для создания сенсоров используют изменения электроемкости чувствительных элементов под влиянием факторов, которые надо контролировать. На рис. 5.3, в качестве примера, в продольном сечении показан цилиндрический , в котором внутренний цилиндрический электрод 1 может двигаться вдоль оси цилиндра относительно внешнего цилиндрического электрода 2.

Рис. 5.3 Цилиндрический конденсатор с подвижной сердцевиной как сенсор линейного перемещения

Электрическая емкость цилиндрического конденсатора, как известно, описывается формулой

(5.3)

где – электрическая постоянная; и – радиусы внутренней и внешней обкладок конденсатора; – длина зоны взаимодействия цилиндров. Поэтому в достаточно широком диапазоне емкость пропорциональна длине , т.е. является линейной функцией перемещения сердцевины. Такие успешно используют для точного преобразования в электрический взаимного положения и перемещения тел.

Электрическая емкость плоского конденсатора описывается, как известно, формулой

(5.4)

где – площадь его пластин; – расстояние между ними; – диэлектрическая проницаемость материала между пластинами. Изменение любой из этих величин приводит к изменению емкости и таким образом может быть зафиксировано. Например, в классических конденсаторах переменной емкости одна группа металлических пластин при повороте вокруг оси сдвигается относительно другой. При этом изменяется площадь их взаимодействия и соответственно электрическая емкость. Такой конденсатор можно использовать, например, как чувствительный элемент в сенсоре угла поворота.

. Примерами емкостных электрических сенсоров являются, а) сенсор линейного перемещения, в котором при перемещении внутреннего стержня цилиндрического конденсатора изменяется его емкость; б) сенсор давления, в котором емкость плоского конденсатора меняется при изменении внешнего давления и соответственно расстояния между пластинами; в) сенсор уровня жидкости, в котором емкость измерительного конденсатора прямо зависит от уровня жидкости; г) гребенчатые газовые сенсоры, в которых емкость между двумя гребенчатыми электродами меняется в зависимости от наличия и концентрации в атмосфере молекул определенных паров или газов.

Импедансные сенсоры

У многих веществ под действием внешних факторов изменяется не только диэлектрическая постоянная, но и электропроводность. В общем случае такие вещества принято характеризовать комплексной диэлектрической проницаемостью. А промежуток между электродами в этом случае характеризуют импедансом – комплексным электрическим сопротивлением переменному току. Конструктивно импедансные чувствительные элементы выполняются так же, как и емкостные. Но измерения производятся на переменном токе оптимально подобранной частоты. При пропускании через них переменного электрического тока соответствующей частоты можно измерять не только абсолютное значение импеданса, но и сдвиг фазы между током и напряжением на чувствительном элементе, что дает дополнительную информацию.

для самопроверки 5

  1. По какому принципу классифицируют электрические сенсоры?

  2. Что такое «трансдьюсер»? Почему электрические сенсоры часто применяют в качестве трансдьюсеров?

  3. Что такое «терморезисторы»? Имеется ли различие между «терморезисторами» и «термисторами»?

  4. Что такое «фоторезисторы»? Объясните физический механизм их действия. Что такое «спектральная характеристика» фоторезистора?

  5. Что такое «пьезорезисторы»? Для чего их применяют?

  6. Что такое «магниторезистивные датчики»? Из какого материала их преимущественно делают?

  7. Приведите примеры емкостных электрических сенсоров.

  8. Чем отличаются емкостные и импедансные сенсоры?

Как подключить сенсорный выключатель света?

Подключение изделия начинается с выбора места монтажа. Но в основном прибор ставят на том же месте, где находился старый клавишный выключатель. Главное требование – это удобство и электробезопасность, которые должны с особой тщательностью обеспечиваться во влажных помещениях – ванных комнатах, на кухне, в туалете. Для современных систем с гальванической развязкой датчика от домашней сети влажность уже не помеха. Но лучше подстраховаться, соблюдая меры безопасности.

Для сенсорного выключателя света с пультом дистанционного управления место установки вообще не имеет значения. В этом случае следует учитывать такой момент – инфракрасный управляющий сигнал должен быть на прямой видимости с датчиком приемника коммутатора. Его закрытие любым предметом приведет к неустойчивой работе системы «включение – выключение».

Установка сенсорного выключателя света

Сам процесс монтажа не является сложной задачей. Устройства снабжены передней панелью. Перед тем, как установить сенсорный выключатель света, её нужно снять. Деталь управления с коммутатором фиксируется в обычном подрозетнике, скрытом в капитальной или гипсокартонной стене. Провода подсоединяются к соответствующим клеммам и плотно зажимаются для надежного контакта, чтобы не допустить их нагрева. Заканчивается монтаж надеванием электрохромной панели.

Принцип работы резистивного сенсорного экрана

За 40-летнюю историю развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно.

Экраны, выполненные по резистивной технологии, состоят из двух основных частей — гибкого верхнего и жесткого нижнего слоев. В качестве первого могут использоваться различные пластиковые или полиэфирные пленки, а второй изготавливается из стекла. На внутренние стороны обеих поверхностей нанесены слои гибкой мембраны и резистивного (обладающего электрическим сопротивлением) материала, проводящего электрический ток. Пространство между ними заполнено диэлектриком.

По краям каждого слоя установлены тонкие металлические пластинки — электроды. В заднем слое с резистивным материалом они расположены вертикально, а в переднем — горизонтально. В первом случае на них подается постоянное напряжение, и от одного электрода к другому протекает электрический ток. При этом возникает падение напряжения, пропорциональное длине участка экрана.

При касании сенсорного экрана передний слой прогибается и взаимодействует с задним, что позволяет контроллеру определить напряжение на нем и вычислить с его помощью координаты точки касания по горизонтали (оси X). Для уменьшения влияния сопротивления переднего резистивного слоя расположенные в нем электроды заземляются. Затем проделывается обратная операция: напряжение подается на электроды переднего слоя, а расположенные в заднем слое заземляются — так удается вычислить координату точки касания по вертикали (оси Y). Таков принцип работы четырехпроводного (названного так по количеству электродов) резистивного сенсорного экрана.

Помимо четырехпроводных встречаются также пяти- и восьмипроводные сенсорные экраны. Последние обладают аналогичным принципом работы, но более высокой точностью позиционирования.

Принцип работы и устройство пятипроводных резистивных сенсорных экранов несколько отличаются от описанного выше. Слой переднего резистивного покрытия в них заменен проводящим слоем и используется исключительно для считывания значения напряжения на заднем резистивном слое. В него встроено четыре электрода по углам экрана, пятый электрод является выводом переднего проводящего слоя. Изначально все четыре электрода заднего слоя находятся под напряжением, а на переднем слое оно равно нулю. Как только происходит касание такого сенсорного экрана, верхний и нижний слои соединяются в определенной точке, и контроллер улавливает изменение напряжения на переднем слое. Так он определяет, что до экрана дотронулись. Далее два электрода в заднем слое заземляются, вычисляется координата точки касания по оси X, а затем заземляются два других электрода, и вычисляется координата точки касания по оси Y.

Как конденсатор превращается в датчик

В данном случае причина и следствие меняются местами. Когда на проводник подается напряжение, электрическое поле образуется у каждой поверхности. В емкостном датчике измерительное напряжение подается на чувствительную зону зонда, причём для точных измерений электрическое поле от зондируемой области должно содержаться именно в пространстве между зондом и целью.

В отличие от обычного конденсатора, при работе емкостных датчиков электрическое поле может распространяться на другие предметы (или на отдельные их области). Результатом станет то, что система будет распознавать такое составное поле как несколько целей. Чтобы этого не произошло, задняя и боковые стороны чувствительной области окружают другим проводником, который поддерживается под тем же напряжением, что и сама чувствительная область.

При подаче эталонного напряжения питания, отдельная цепь подает точно такое же напряжение на защиту датчика. При отсутствии разницы в значениях напряжений между зоной чувствительности и защитной зоной, электрическое поле между ними отсутствует. Таким образом, исходный сигнал может исходить только от незащищенного фронта первичной цепи.

В отличие от конденсатора, на действие емкостного датчика будет влиять плотность материала объекта, поскольку при этом нарушается однородность создаваемого электрического поля.

Как установить и подключить?

Иностранные приборы содержат маркировку «L-load» и «L-in», что обозначает тип контактов – вход под нагрузку, выход на светильники или другие приборы. Часто надпись содержится на терминале сопряжения устройств «СОМ».

Совет
Даже при полной ясности обозначений лучше внимательно изучить паспорт выключателя, чтобы его не испортить неумелым монтажом.

Провод фазы должен подключаться к клемме входа «L-in», а отходящий к светильнику проводник должен вставляться в клемму «L-load», что будет снимать напряжение с линии. Такие выключатели могут подключаться сразу к нескольким видам нагрузок, которые не зависят друг от друга, что существенно увеличивает число терминалов на выключателе. Эти отверстия получают аналогичную маркировку выхода, но с перечислением порядкового номера. Монтируются выключатели в типовом подрозетнике с винтовым креплением шасси рабочего механизма.

Если в вашем доме установлены не только сенсорные выключатели, то предлагаем ознакомиться и с другими статьями, в которых вы найдете подробную информацию об установке, ремонте и замене таких видов этих приборов — проходные и перекрестные, с подсветкой, инфракрасные, клавишные, хлопковые, акустические и светодиодные.

Правила подключения

Монтаж сенсорного выключателя соответствует классической схеме, которая предназначена для клавишных изделий. Почти всегда на задней панели присутствуют два терминальных контакта: под нагрузку и входной. Качественная коммутация в схеме изделия осуществляется по фазной линии. На вход подается проводник, а на выходе снимается напряжение для нагрузки. В некоторых случаях конструкция может состоять из нескольких независимых участков. Из-за этого количество терминалов для подключения увеличивается. Чтобы не запутаться, нужно следовать классической схеме. Конструкция выключателя изготавливается таким образом, чтобы она свободно размещалась в традиционных подрозетниках. Фиксация шасси осуществляется прочными винтами.

Ошибки при подключении

Основной проблемой при монтаже всегда остается не учет мощности потребителей. У большинства сенсорных выключателей света максимальная проходная нагрузка ограничена до 1 кВт. Превышать ее ни в коем случае не следует. В своем большинстве устройства такого типа не содержат предохранительные элементы, блокирующие излишнюю нагрузку. Отсюда и их относительная пожароопасность при превышении максимума.

Еще одной, относительно частой ошибкой при монтаже сенсорных выключателей света или энергии на 220В служит неверное подключение контактных групп. К примеру, не раз было замечено, что ноль сети электропитания пытаются разделять управляющим устройством, вместо фазы. Конечно, это создает существенные проблемы в его функционировании, оно становится попросту невозможным.

Практикуемое соединение фазы и COM порта для конечных устройств смысла особого не имеет. Все же предназначение у него иное — осуществлять связь с другими коммутаторами или проходными выключателями.

Резистивные экраны

Резистивная система представляет собою обычное стекло, покрытое слоем проводника электричества и упругой металлической «пленкой», тоже обладающей токопроводящими свойствами. Между этими двумя слоями при помощи специальных распорок оставляют пустое пространство. А поверхность экрана покрыта материалом, защищающим его от царапин.

Во время работы пользователя с тачскрином, электрический заряд проходит через оба слоя. Каким образом все происходит? Пользователь касается экрана в определенной точке и упругий верхний слой приходит в соприкосновение с проводниковым слоем. Причем именно в этой точке. Затем компьютер определяет координаты точки, которой коснулся пользователь.

Когда координаты уже известны устройству, специальный драйвер переводит прикосновение в известные операционной системе команды. Здесь уместна аналогия с драйвером обычной компьютерной мышки. Он занимается тем же самым: объясняет операционной системе, что именно хотел ей сказать пользователь нажатием кнопки или перемещением манипулятора. С экранами этого типа чаще всего используют специальные стилусы.

Резистивные экраны можно обнаружить в сравнительно немолодых устройствах. Именно таким сенсорным дисплеем был оборудован IBM Simon, древнейший из сознанных нашей цивилизацией смартфонов.

Как подключить сенсорный выключатель света

При установке изделия нужно правильно выбрать местоположение. Производитель диктует правила по месту монтажа. Прибор с пультом удаленного управления должен располагаться в видимом месте с комнаты отдыха. Механизмы, чувствительные к повышению или понижению температуры, нужно располагать вдали от радиаторов отопления.

Схемы подключения для светодиодных ламп могут разниться. В процессе работ по подключению следует отключить подачу электроэнергии. Нужно изолировать все провода.

Для монтажа накладных моделей нужно делать углубление в стене. Установку можно осуществить без подключения специалистов.

Правила подключения

Установка производится по схеме для клавишных устройств. Чаще всего на задней панели есть 2 терминальных контакта. Один для нагрузки, другой входной. Целесообразная коммутация в системе прибора производится по фазной линии. На вход направляется проводник, на выходе снимается напряжение для нагрузки.

Устройство может иметь несколько независимым участков. Тогда количество терминалов для подключения возрастает. Чтобы ориентироваться, нужно пользоваться классической схемой. Размещение осуществляется в традиционных подрозетниках. Фиксация шасси производится надежными винтами.

Схема силовой части сенсорного выключателя света 220В

Схема этого варианта силовой части выключателя представлена на рис. 3. Подробное описание фазового регулятора К1182ПМ1 имеется в и . Конечно, он может и напрямую управлять лампой (допустимый ток — 1,2 А), но если она слишком мощная, микросхема может сгореть (пусковой ток лампы накаливания в несколько раз больше рабочего). Поэтому для повышения надёжности в рассматриваемый вариант силовой части выключателя добавлен симистор VS1. Он может быть любым, главное, чтобы открывающий ток управления им не превышал 1,2 А.

Чем больше этот ток, тем меньше должно быть сопротивление резистора R4, вплоть до полного его исключения. Здесь можно использовать и симистор КУ208Г, причём его подборка по току открывания не обязательна, но потребуется уменьшить сопротивление резистора R4 до 470 Ом. Более подробно о выборе симистора можно прочитать в . Несколько слов о резисторе R5.

Для мощных симисторов, в том числе и КУ208Г, он не нужен. А вот при применении импортных симисторов с малым током открывания (например, серии ВТ134) обойтись без него не удастся — симистор будет открываться и при отсутствии разрешающего сигнала. Вероятно, у микросхемы К118ПМ1 ток утечки в закрытом состоянии сопоставим с током открывания этих симисторов.

Чтобы определить нужное сопротивление резистора R5, необходимо вместо него временно установить переменный резистор сопротивлением 1 кОм. Затем соединить выводы 6 и 3 микросхемы К118ПМ1 и уменьшать сопротивление переменного резистора, пока лампа EL1 не погаснет. После этого измерить введённое сопротивление переменного резистора и заменить его постоянным резистором ближайшего (в меньшую сторону) номинала.

После подборки резистора R5 необходимо убедиться, что в “разомкнутом” состоянии выключателя симистор полностью закрыт, а напряжение на лампе EL1 отсутствует. Дело в том, что при слишком большом сопротивлении резистора R2 на лампу EL1 может поступать напряжение, даже когда транзистор VT1 полностью открыт. Если это напряжение меньше, чем необходимо для свечения лампы, вы даже не будете знать, что в выключенном состоянии ваша настольная лампа потребляет ток, возможно, и не маленький. Для устранения этого дефекта сопротивление резистора R2 необходимо уменьшать.

Нелишне будет измерить напряжение на лампе и при “замкнутом” выключателе. Оно должно быть меньше напряжения в сети не более чем на 2…3 В. Если оно меньше на пять и более вольт, значит, конденсатор С1 имеет большой ток утечки, и его необходимо заменить. Для существенного увеличения срока службы лампы накаливания нужно выполнить два условия. Во-первых, ее включение должно продолжаться не менее 2…3 с. Это время устанавливают подборкой ёмкости конденсатора С1. Чем она больше, тем медленнее включается лампа.

Во-вторых, питать лампу нужно напряжением 210…215 В, если это допустимо по условиям освещения. Для ограничения максимального напряжения параллельно конденсатору С1 подключите не показанный на схеме резистор. Его сопротивление, в зависимости от экземпляра микросхемы К1182ПМ1, может лежать в пределах 82…510кОм. Подбирают его экспериментально, глядя на показания подключённого параллельно лампе вольтметра, измеряющего истинное действующее значение переменного напряжения. Её яркость, конечно, немного снизится, но срок службы увеличится значительно.

Если вместо этого постоянного резистора применить переменный, получим сенсорный выключатель с регулировкой яркости. Выключатель с тринистором или симистором может стать источником помех, поэтому необходимо включить последовательно с ним помехоподавляющий дроссель, содержащий пять слоёв обмоточного провода диаметром 0,6…0,7 мм, намотанных виток к витку на ферритовом стержне диаметром 8…10 мм и длиной 25…30 мм. Все предложенные варианты сенсорных и силовых частей выключателей взаимозаменяемы и стыкуются между собой.

Необходимый вариант может быть выбран в зависимости от наличия деталей и мощности нагрузки, а также по принципу управления выключателем

Поскольку устройство имеет гальваническую связь с сетью, во время налаживания следует соблюдать осторожность, все изменения производить только после его отключения от сети. Желательно во время налаживания устройства питать его через развязывающий трансформатор. Это обезопасит и от ударов электрическим током, и от повреждения деталей при случайных замыканиях на заземлённые предметы

Это обезопасит и от ударов электрическим током, и от повреждения деталей при случайных замыканиях на заземлённые предметы.

Выводы и полезное видео по теме

Этот обзор позволяет ближе познакомиться с коммутаторами света, быстро набирающими популярность в обществе.

Сенсорные выключатели, отмеченные продуктовой маркой Livolo, — что это за конструкции и насколько привлекательны они для конечного пользователя. Видео гид по коммутаторам нового типа поможет получить ответы на вопросы:

Завершая тему сенсорных коммутаторов, стоит отметить активное развитие в области разработки и производства выключателей для бытового и промышленного использования.

Выключатели света, казалось бы, простейшие конструкции, совершенны уже настолько, что теперь управлять светом можно голосовой кодовой фразой и при этом получать полную информацию о состоянии атмосферы внутри помещения.

Есть, что дополнить, или возникли вопросы по сборке сенсорного выключателя? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких приборов. Форма для связи находится в нижнем блоке.

Умный дом

Если поставить в основу реле, управляющее большой нагрузкой, приспособление может использоваться для регулировки освещения. Особенность сенсорного управления заключается в возможности плавного выключения и включения света, а также наличии там сенсорной панели и пульта ДУ. Иногда сенсорные выключатели выпускают совместно с розеткой электроприборы, которые управляются пультом дистанционного управления. Объединенный блок розетки и выключателя очень удобно устанавливать в кухне или санузле. За безопасность в таком случае можно не переживать: несмотря на совмещенное размещение, благодаря подсветке сенсора вы не перепутаете его с розеткой. К тому же возможность включения не от контакта с чувствительным элементом, а от приближения пальцев к нему точно предотвратит попадание пальцев в розетку.

Выключатель света сенсорный

Вне зависимости от того, сколько подключенных потребителей, сенсорный выключатель включает в себя:

  • чувствительный элемент, размещенный за декоративной пластинкой. Он реагирует на прикосновение либо приближение пальцев;
  • полупроводниковую управляющую схему. Она совершает преобразование идущего от чувствительного элемента сигнала в сигнал электрического типа, который воспринимается коммутационным элементом;
  • коммутационный элемент, отвечающий за действия с электроцепью (размыкание, замыкание, регулирование нагрузки).

Чтобы инфракрасный датчик смог зафиксировать тепловую энергию от пальцев, в приборах нередко используются линзы фокусировки. Таким образом, ИФ-датчики могут реагировать не только на человеческие прикосновения, но и на тепло от других механизмов.

Сенсорный выключатель Kopou белый на 3 зоны

Мнение специалиста

Сенсорные выключатели чаще всего применяются в быту. Данное устройство для светодиодных ламп может быть оснащено диммером, который позволяет регулировать яркость света. Если удерживать палец на сенсоре, она будет меняться, при коротком касании световой поток включится. Место выключателя лучше всего выделить светодиодом.

Константин Котовский

Выводы

На этом автор заканчивает обзор большого набора из различных датчиков для аппаратной платформы Arduino. В целом данный набор произвел на автора смешанное впечатление. В набор входят как достаточно сложные датчики, так и совсем простые конструкции. И если в случае наличия на плате модуля токоограничительных резисторов, светодиодных индикаторов и т.п. автор готов признать полезность подобных модулей, то небольшая часть модулей представляет собой одиночный радиоэлемент на плате. Зачем нужны такие модули, остается непонятным (видимо крепление на стандартных платах служит целям унификации). В целом набор является неплохим способом познакомиться с большинством широко распространенных датчиков, применяемых в Arduino проектах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: