Удвоитель напряжения постоянного тока

Повышение постоянного напряжения

Общий принцип увеличения постоянного напряжения в произвольное число раз

Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока. Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.

Структурная схема такого преобразователя показана на рисунке 5.

Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.

Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Повышение переменного напряжения

Разновидности трансформаторов

Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.

Рис. 2. Схемы трансформатора и автотрансформатора

Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.

Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.

Особенности трансформаторов

Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент

  • увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
  • выполняет функцию несущей силовой основы для обмоток.

Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.

При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.

Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.

В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток. Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей. Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.

Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток

Лабораторные автотрансформаторы ЛАТР

Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.

ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.

При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.

Рис. 4. Внешний вид одного из вариантов ЛАТР

Програмное обеспечение

Мы разработали служебное программное обеспечение для более быстрого определения значений компонентов для быстрого прототипирования блока питания на основе MC34063. Программа написана с использованием HTML и JavaScript и может быть встроена в систему с установленным PHP. Он работает в среде разработки PHP. HTML – это интерфейсное программное обеспечение, тогда как PHP – это фоновое программное обеспечение. Файл JavaScript проверяет наличие пустых полей в HTML-форме. PHP встроен в веб-сервер. Таким образом, несколько пользователей в сети, например в лаборатории или колледже, могут использовать это программное обеспечение одновременно. Программа разработана с использованием среды IDE NetBeans для PHP.

Скачать исходный код.

Установка программы.

1. Загрузите WampServer (для разработки на локальном хосте) с www. wampserver.com/en/ и IDE NetBeans с сайта https://netbeans.org/features/php/. Установите их на свой ПК с Windows. Установите соответствующее расширение Visual C ++ (здесь VC ++ 2012) перед установкой WampServer, чтобы получить все необходимые файлы dll для бесперебойной работы среды IDE и сервера Apache. 

2. WampServer работает в фоновом режиме с опцией в онлайн-режиме. Убедитесь, что значок WampServer на панели задач становится зеленым. 

3. Создайте папку, скажем, HighVoltage, в папке C: wamp www. Скопируйте файлы изображений HVBoostCalculator.html, HVDesign.js и HVcircuit.jpg в папку проекта. 

4

Создайте новый проект PHP в NetBeans. Выберите «Приложение PHP» и нажмите «Далее». Папка проекта будет создана автоматически. Обратите внимание, что ваша папка HighVoltage находится в этой папке проекта. . 5. Под окном «Run Configuration» выберите опцию «local server» в поле «Run As:». Затем нажмите «ОК», чтобы продолжить. HVBoostCalculator.html – это HTML-скрипт, а его ассоциированное изображение – HVcircuit.jpg. HVDesign.js – это скрипт Javascript. Запустите HVBoost Calculator.html, чтобы получить страницу, как показано на рис

6. Рис. 6: Снимок экрана с выводом программы для источника питания HVDC

5. Под окном «Run Configuration» выберите опцию «local server» в поле «Run As:». Затем нажмите «ОК», чтобы продолжить. HVBoostCalculator.html – это HTML-скрипт, а его ассоциированное изображение – HVcircuit.jpg. HVDesign.js – это скрипт Javascript. Запустите HVBoost Calculator.html, чтобы получить страницу, как показано на рис. 6. Рис. 6: Снимок экрана с выводом программы для источника питания HVDC.

Сначала необходимо подать на вход постоянного тока 9-12 В и допуск напряжения в зависимости от используемого источника питания; как правило, допуск по напряжению составляет 1%. Затем укажите требуемое выходное напряжение и ток в соответствующих полях формы. (Для более высоких выходных напряжений, пожалуйста, используйте транзистор T1 с более высокими характеристиками напряжения и тока.)

Используя таблицу данных силового транзистора T1, найдите его значение насыщения Vce и ​​поместите в поле формы. Также получите прямое падение напряжения на диоде D1 из его таблицы данных в поле формы. Эти параметры очень важны для расчета значений компонентов. После того, как все значения были заполнены в соответствующих полях, нажмите кнопку «Найти значения компонента». Форма проверяется на наличие пустых полей, а расчет производится для компонентов. Вы получите значения R1 через R3, R6, L1, C1 и C2, а также параметры схемы, такие как рабочий цикл, частота переключения и выходная мощность.

Как показано на скриншоте программы, спроектируйте схему для входного напряжения 12 В постоянного тока, выходного напряжения 500 В постоянного тока, выходного тока 2 мА и синхронизирующего конденсатора 4,4 нФ. На выходе программы вы получаете значения выходного конденсатора 8,20 мкФ, чувствительного резистора R6 1,59 кОм (ближайшее значение 1,50 кОм) и индуктивности L1 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3. чувствительный резистор R6 равен 1,59 Ом (ближайшее значение 1,50 Ом), а индуктор L1 равен 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3. чувствительный резистор R6 равен 1,59 Ом (ближайшее значение 1,50 Ом), а индуктор L1 равен 6,8 мГн. Полная принципиальная схема этой конструкции показана на рис. 3.

Умножитель_из_диодных_мостов

Существуют недостатки умножителей напряжения перед обычными выпрямителями:

· более высокий уровень пульсаций;

· обычно большее внутреннее сопротивление, сильно зависящее от ёмкости применённых в них конденсаторов.

Эти особенности определили сферу применения умножителей напряжения — чаще всего в устройствах небольшой мощности, нетребовательных к качеству питания.

Рис. 3.4-16. Схема несимметричного удвоителя напряжения (а) и временные диаграммы, поясняющие его работу (б)

Еще одна схема удвоителя напряжения, составленная из двух однофазных однополупериодных выпрямителей с емкостным фильтром, дана на рис. 3.4-17. Ее называютсимметричным удвоителем напряжения (или схемой Латура). Входящие в схему выпрямители по входу включены параллельно, а по выходу последовательно.

Рис. 3.4-17. Симметричный удвоитель напряжения (схема Латура)

При положительной полуволне входного напряжения работает выпрямитель на диоде VD1, заряжая конденсатор C1, а при отрицательной полуволне — выпрямитель на диоде VD2, заряжающий конденсатор C2. В результате и C1, и C2 заряжаются до уровня входного напряжения, а при их последовательном включении суммарное напряжение равно удвоенному входному.

Основное преимущество схемы Латура перед несимметричным удвоителем напряжения (рис. 3.4-16) состоит в том, что рабочее напряжение обоих конденсаторов составляет Uвх max.

Коэффициент умножения подобных схем можно увеличивать, наращивая количество звеньев умножения.

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом).

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию — «экспонаты» коллекции:

Практические схемы УН для КВ и УКВ

Радиолюбителям-коротковолновикам, занимающимся самостоятельным изготовлением радиоаппаратуры, знакома проблема изготовления хорошего силового трансформатора для выходного каскада передатчика или трансивера.

Эту проблему поможет решить схема, показанная на рис.2. Достоинством практической реализации является использование готового, не дефицитного в связи с уходом старой техники, силового трансформатора (СТ) от унифицированного лампового телевизора (УЛТ) второго класса, который можно использовать в качестве силового трансформатора для питания усилителя мощности (УМ) радиостанции 3 категории.

Рекомендуемое техническое решение позволяет получить от СТ все необходимые выходные напряжения для УМ без каких либо доработок. СТ выполнен на сердечнике типа ПЛ, все обмотки конструктивно выполнены симметрично и имеют по половине витков на каждой из двух катушек.

Такой СТ удобен как для получения необходимого анодного напряжения, так и напряжения накала, т.к. допускает использование в качестве выходной в УМ как лампы с 6-вольтовым накалом (типа 6П45С), так и лампы (типа ГУ50) с 12-вольтовым накалом, для чего необходимо только соединить обмотки накала параллельно или последовательно. Применение же удвоителя позволит без затруднений получить напряжение 550…600 В при токе нагрузки порядка 150 мА.

Этот режим оптимален для получения линейной характеристики для лампы ГУ50 при работе на SSB. Соединив обмотки накала последовательно (используемые в ТВ для питания накала ламп и кинескопа) и применив УН по схеме рис.3, можно получить источник отрицательного напряжения смещения для управляющих сеток ламп (порядка минус 55.65 В).

В связи с небольшим током потребления по управляющей сетке, в качестве конденсаторов такого УН можно применить неполярные конденсаторы 0,5 мкФ на 100.200 В.

Эти же обмотки можно использовать и для получения напряжения коммутации режима «прием-передача». При построении выходного каскада с заземленной сеткой управляющая сетка подключается к источнику отрицательного напряжения (УН 55.65 В), катод подключается через дроссель (015 мм, n=24, ПЭВ-1 00,64 мм) к -300 В, а на анод подается +300 В, напряжение возбуждения подается на катод через конденсатор .

Можно подключить управляющую сетку непосредственно к -300 В, катод подсоединяется к -300 В через две параллельно соединенных цепочки, каждая из которых состоит из стабилитрона Д815А и 2-ваттного резистора 3,9 Ом . Напряжение возбуждения в этом случае подается на катод через широкополосный трансформатор.

Если выходной каскад УМ выполнен по схеме с общим катодом, то на анод подается +600 В, а на экранную сетку +300 В с точки соединения С1, С2, С3, С4 (выход -300 В соединен с «общим» проводом RXTX), что позволяет избавиться от мощных гасящих резисторов в цепи экранной сетки, на которых бесполезно выделяется большая тепловая мощность. На управляющую сетку подается отрицательное смещение -55.65 В с упомянутого ранее УН.

Для уменьшения уровня пульсаций питающего напряжения в выпрямителе можно также использовать и штатные дроссели (L1, L2, рис.2) фильтра источника питания того же УЛТ типа ДР2ЛМ с индуктивностью первичной обмотки порядка 2 Гн. Намоточные данные СТ и ДР2ЛМ приведены в .

Умножитель напряжения ⋆ diodov.net

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.

Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.

Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.

В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.

Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.

В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.

Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.

Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.

К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

↑ Голливудский хепиенд

Данная схема построена по принципу разделенного питания для накальной и анодной цепей. Такое решение имеет ряд преимуществ, ранее оно реализовывалось соответственно на трансформаторах серий «ТН» и «ТА».

Первое. Разделение «обязанностей», обеспечивает хороший запас, поскольку не надо закладывать в мощность потери как в «перевертыше», где без двух трансформаторов тоже не обойтись, однако используются они неэффективно.Второе. Нелишне помнить, что трансформатор с малым количеством меди и стали, при номинальной нагрузке излучает помехи по интенсивности отличающиеся, от трансформатора, в котором медь и сталь не экономили. Поэтому запас по току не помешает.Третье. Можно, не трогая анодное питание, изменить напряжение накала с 6 на 12 Вольт. Во втором случае, если устройство гибридное, мы можем питать операционный усилитель и накал от одной цепи.Четвертое. В отличие от умножителя, удвоитель обладает более хорошей нагрузочной характеристикой меньшими пульсациями и другим их спектром. Я умышленно не стал строить утроитель, учетверитель и т.п. С увеличением количества звеньев, растет внутреннее сопротивление источника питания, и потери. Все это ставит под сомнение целесообразность построения умножителей. Может форумчане, используя мои наработки, построят блок с другими характеристиками, это будет интересно! Мне нужно было 120 Вольт при токе 2 мА, и отсутствие фона, блок питания с этой задачей справился.

Принцип действия. Основные показатели

Простейший умножитель Vбэ — двухполюсник, состоящий из биполярного транзистора Т1 под управлением делителя напряжения R1R2. Внутреннее сопротивление цепи, в которую включается этот двухполюсник, должно быть достаточно велико, чтобы ограничивать коллекторный ток T1 на безопасном уровне; в практических схемах ток через умножитель обычно задаётся источником тока. Сопротивление делителя выбирается достаточно низким, чтобы протекающий через R2 ток базы Т1 был намного ниже тока делителя. В этих условиях транзистор охвачен отрицательной обратной связью, благодаря которой напряжение коллектор-эмиттер Т1 (Vкэ) устанавливается на уровне, пропорциональном напряжению на его эмиттерном переходе (Vбэ). Tемпературный коэффициент (ТКН) Vкэ и внутреннее сопротивление между коллектором и эмиттером Rкэ подчиняются той же зависимости:Vкэ = k·Vбэ ;TKH (Vкэ) = dRкэ/dT = k·dRбэ/dT ≈ −2,2·k мВ/K при 300 К;Rкэ = k (vt / Iэ) , где коэффициент умноженияk = 1+R2/R1 , аvt — температурный потенциал, пропорциональный абсолютной температуре (для кремния при 300 К примерно равен 26 мВ).

Вольт-амперная характеристика (ВАХ) идеализированного умножителя Vбэ совпадает с ВАХ транзистора в диодном включении, растянутой вдоль оси напряжений в k

раз.

Электрик в доме

Умножитель напряжения

Умножителем напряжения называют устройство преобразующее переменное напряжение или постоянное пульсирующее в более высокое постоянное напряжение. Как правило умножитель увеличивает напряжение в такое число раз, которое соответствует количеству каскадов умножения. Рассмотрим как сделать своими руками самый простой и известный умножитель напряжения Кокрофта-Уолтона, который был использован для ускорителей элементарных частиц для разработки атомной бомбы.

С помощью умножителя напряжения можно отказаться от тяжёлых и габаритных повышающих трансформаторов. Преимущество этой схемы в том, что на конденсаторах развивается всего лишь удвоенное амплитудное значение входного напряжения. Соответственно конденсаторы и диоды схемы могут быть рассчитаны на это напряжение.

Работа схемы

На схеме изображён универсальный умножитель с произвольным количеством каскадов. То есть берём число каскадов для создания необходимого нам напряжения. Примерно Uвых = n*Uвх.

При отрицательной полуволне Uвх заряжается конденсатор С1 до амплитудного значения Uвх через диод D1. При положительной полуволне заряжается конденсатор С2 через диод D2, но поскольку конденсатор С1 уже заряжен, то он будет выполнять роль дополнительного источника питания и поскольку он оказывается включённым последовательно с основным источником питания, то конденсатор С2 зарядится уже до удвоенного амплитудного значения напряжения Uвх.

Таким же образом работают и последующие ступени умножителя, снимается же выходное напряжение Uвых с последовательно соединённых конденсаторов с чётными (по схеме) номерами. Соответственно результирующее напряжение Uвых будет равно сумме напряжений на чётных конденсаторах.

Расчёт умножителя напряжения

Для расчёта умножителя нужно знать ток нагрузки (Iн), требуемое выходное напряжение (Uвых) и желаемый коэффициент пульсаций (Кп).

Минимальная ёмкость конденсаторов (в мкФ) рассчитывается по упрощённой формуле:

С(n) = 2,85*n*Iн/(Кп*Uвых), где

n—кратность умножения Uвх в В; Iн — ток нагрузки в мА; Кп — коэффициент пульсаций выходного напряжения в процентах; Uвыx—выходное напряжение в В.

Ёмкость первого конденсатора С1 нужно увеличить в 2-3 раза от расчётной ёмкости других конденсаторов, иначе полное напряжение на выходе схемы появится через несколько периодов входного напряжения

Если это не важно для работы нагрузки, то можно поставить конденсатор такой же ёмкости, как и остальные

Для примера скажу, что коэффициент пульсаций считается отличным при значении 0,1% и меньше, хорошим при значении 1 — 3%. Если коэффициент не важен, то примите его равным 100.

Максимальный ток, протекающий через диоды будет равен удвоенному току нагрузки.

Также умножитель можно рассчитать более точно по следующей формуле:

Uвых = n* Uвх — (Iн*(n3 + 9*n2/4 + n/2 )/(12 *f* C)), где Iн — ток нагрузки в А; n — кратность умножения; f — частота входного напряжения в Гц; С — емкость конденсатора в Ф.

Детали умножителя

Сложно назвать конкретные типы и номиналы деталей не зная требуемых параметров умножителя, поэтому рассмотрю детали для умножителя со средними показателями, питающегося от сети переменного тока 220В.

Конденсаторы лучше всего брать с минимальным током утечки, например серии К73. Рабочее напряжение конденсаторов должно быть для Uвх=220В: С1 — не ниже 300В, С2-Сn — не ниже 600В. Ёмкость конденсаторов порядка 0,1 — 1 мкФ.

Диоды можно взять, например, КД411 или КД226Г(Д,Е). Ток нагрузки в этом случае может быть до 1А.

Будьте крайне осторожны при эксплуатации данной схемы, опасное напряжение остаётся на конденсаторах даже после отключения умножителя от источника питания.

Будет интересно почитать:

Переключатель гирлянд

Удлинитель своими руками

Двухпроводная схема включения света с двух мест

Рубрики: Электронные устройства, Электросхемы Метки: своими руками, электроника, электросхема

↑ Выходы из положения

Я не буду рассматривать широко известные методы, поскольку все они хорошо описаны в «сети». Ограничусь простым перечислением с указанием основных «подводных камней».

Обратное включение трансформатора, так называемый «перевертыш».«Повышающий» трансформатор работает неэффективно, потери велики.Вторичная обмотка, ставшая теперь первичной, потребляет существенный ток, нагружая первый трансформатор, на котором и так «висит» накал. Тем не менее, решение распространенное и вполне приемлемое.

Умножитель.Для получения низкого уровня пульсаций, необходимы конденсаторы значительной емкости, как следствие увеличение «жилой площади» БП.Появление «нехарактерных» загрязнений питающего напряжения, за счет увеличения количества переходных процессов, на звуке отражается не самым лучшим образом.И, наверное, главный недостаток, низкая нагрузочная способность источника питания. При этом точно рассчитать, на сколько уменьшится под нагрузкой напряжение, и возрастут помехи, весьма затруднительно. Я никогда не участвую в спорах на тему: «Какой Закон Ома самый правильный», а по сему напомню, что даром бывает только сыр в мышеловке. Иными словами, во сколько раз умножите напряжение, во столько и проиграете в токе, плюс потери, куда без них.

Дальнейшее изложение будет происходить на примере построения блока питания для гибридного (ОУ + электронная лампа) Овердрайва для гитары. Принцип можно использовать и для любых других устройств, он общий. В итоге, у меня получился напольный ламповый гитарный предусилитель. Сначала я воспринимал его просто как макет, и хотел разобрать, но он мне так понравился, что я оставил его «в живых». Для наглядности, его БП и будем рассматривать.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector