Световая эффективность и световая отдача

Выбираем светодиодные лампы для дома

При выборе цветовой температуры надо изначально определиться, для каких целей будет использоваться светодиодное освещение.

Как показали исследования, спектр излучения лампы важен не только для субъективного восприятия. При освещении рабочих мест лампами с температурой 2000К-3000К способность обрабатывать информацию снижается почти на четверть. Видимо, это связано с тем, что подсознательно мозг ассоциирует такое освещение с закатом или рассветом.

В то же время холодный белый свет оказывает более тонизирующее воздействие на мозг. Еще одна особенность «холодных» светодиодов – высокая дальность видимости, благодаря этому такой тип источников света широко используют в прожекторах и поисковых фонарях.

Цветовая температура светодиодных ламп для дома выбирается исходя из назначения помещений.

Как показывают многочисленные исследования, наиболее оптимальное освещение в квартире можно достичь лишь при использовании нескольких светодиодных источников света с разной цветовой температурой.

https://youtube.com/watch?v=3Vq7bWeQOT4

Теплый белый свет (2700-3200К)

Теплый свет предпочтителен для рекреационных зон, то есть мест, предназначенных для отдыха. Такие лампы устанавливают в спальнях, гостиных. В гостиной лучше комбинировать нейтральный и тёплый свет.

При недостаточном естественном освещении включаем нейтральный или оба, а в вечернее время либо при просмотре телепередач – тёплый. Для спальни однозначно стоит остановиться на лампах тёплого света.

Нейтральный белый свет (3200-4500К)

Такие лампы предпочтительнее использовать в помещениях, которые предназначены для зрительной работы. Этот спектр излучения не утомляет глаза и обеспечивает наилучшее цветовосприятие.

Холодный белый свет (более 4500К)

Как уже говорилось, холодный белый свет оказывает стимулирующее влияние на наш мозг. В бытовых условиях его используют в ситуациях, где желательна периодическая концентрация внимания, например смотровые кабинеты, операционные. Светодиодные лампы с холодным белым светом, размещённые в ванной комнате, помогу утром быстрее войти в рабочий тонус.

Классификация

По одной из них светодиоды по назначению группируют так:

  1. Индикаторные.
  2. Осветительные.

Индикаторные в своей группе делятся на следующие виды.

DIP-диоды

Аббревиатура получена от Dual In-line Package или «двойное размещение в линию». Обычно корпусы – цилиндры, но есть и параллелепипеды. На нижнем торце проволочные аксиальные выводы, параллельные основной оси симметрии корпуса. Вывод катода меньшей длины, чем анода.


ДИП-светодиод над печатной платой, видна пайка в металлизованные отверстия.

Деление на типы – по диаметру корпуса и линзе на верхнем торце. Диаметры от 2-3 до 20 мм и более. Цвет свечения – любой, белых оттенков несколько.

Один из типов – мигающий 2-мя цветами, имеет 3 вывода.

Диоды Straw Hat

Дословный перевод – соломенная шляпа или брыль. Применяя к светодиодам – корпус похож на шляпу с округлым верхом.


Вариант ДИП-светодиода под названием Straw Hat или «соломенная шляпа».

Видны выводы разной длины, короткий – катод. Видны и ограничители высоты установки. Под линзой – кристалл с желтым люминофором.

Super Flux “Piranha”

Прямой перевод – сверхпоток. Piranha – перевод на русский язык – пиранья. Название светодиод получил из-за особенностей металлических выводов в виде узких полосок. Для упрощения установки в отверстия печатной платы у концов выводов при штамповке срезали углы. Так получились острые «зубы» хищной рыбы.

На выводе отштампованы «плечики» – ограничители, задающие высоту корпуса над платой. Так открыли корпус для охлаждения воздухом снизу. Кристаллы для пассивного охлаждения разместили на верхних торцах выводов.

Разместив в корпусе 2 или 3 чипа, увеличили поток света. А диод попал в группу сверхъярких.


Светодиод вида «пиранья» в прозрачном корпусе.

Виден кристалл, «накрытый» линзой и зауженные выводы-формирователи высоты установки.

SMD-светодиоды

Аббревиатура от Surface Mounted Device, перевод с английского – устройство, установленное на поверхность. Имеют вид прямоугольных корпусов из пластика или керамики. Выводы – снизу и на боковой части корпуса в виде контактных площадок.

Чаще всего – осветительные, но при малой мощности могут быть и индикаторными. Мощности от мВт (милливатт) до Вт. Свечение – любой цвет или оттенок белого света.

Устройство LED-диодов

Устройство светодиодной лампы на 220 вольт не отличается большой сложностью и вполне может быть рассмотрено даже на любительском уровне. Классическая светодиодная лампа на 220 вольт включает в свой состав следующие обязательные элементы:

  • Несущий корпус с цоколем;
  • Специальную рассеивающую линзу;
  • Отводящий тепло радиатор;
  • Модуль светодиодов LED;
  • Драйверы светодиодной лампы;
  • Блок питания.

Ознакомиться со строением LED-лампы на 220 вольт (технология СОВ) можно на размещённом ниже рисунке.

Строение светодиодного осветителя

Этот светодиодный прибор изготавливается как единое целое и содержит в своей конструкции большое количество однородных кристаллов, распаиваемых при сборке с образованием многочисленных контактов. Для его подключения к драйверу достаточно присоединить всего одну из контактных пар (остальные кристаллы подключены параллельно).

По своей форме эти изделия могут быть круглыми и цилиндрическими, а к сети они подсоединяются посредством специального резьбового или штырькового цоколя. Для светодиодной системы общего пользования, как правило, выбираются светильники, показатель цветовой температуры которых составляет 2700К, 3500К или 5000К (при этом градации спектра могут принимать любые значения). Такие приборы довольно часто применяются в декоративных целях и для освещения рекламных баннеров и щитов.

Рассмотрим отдельные модули светодиодной лампы более подробно.

Драйвер

В упрощённом виде схема драйвера, используемого для питания лампы от сети 220 Вольт, выглядит, как это изображено на рисунке ниже.

Схема простейшего драйвера

Количество деталей в этом устройстве, выполняющем согласовательную функцию, относительно невелико, что объясняется особенностями схемного решения. Его электрическая схема содержит в своём составе два гасящих резистора R1, R2 и подключённые к ним по встречно-параллельному принципу светодиоды HL1и HL2.

Дополнительная информация. Такое включение ограничительных элементов обеспечивает  защищённость схемы от обратных выбросов напряжения питания. Помимо этого, в результате такого включения частота поступающего на лампы сигнала возрастает вдвое (до 100 Гц).

Сетевое напряжение питания с действующим значением 220 Вольт подаётся в схему через ограничительный конденсатор С1, с которого оно поступает на выпрямительный мостик, а затем – непосредственно на лампу.

Источник питания

Типовая схема источника питания LED-лампы изображена на рисунке, представленном ниже.

Схема модуля питания с драйвером

Эта часть осветительного прибора выполнена в виде отдельного блока и поэтому может свободно извлекаться из корпуса (с целью её ремонта своими руками, например). На входе схемы имеется выпрямительный электролит (конденсатор), после которого пульсации с частотой 100 Герц частично исчезают.

Резистор R1 необходим для образования цепочки разряда конденсатора при отключении схемы от источника питания.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Что такое люмен и люкс

Любой источник света можно охарактеризовать силой излучаемого света. В международной метрической системе она измеряется в канделах (кд). Производной от канделы является величина, характеризующая непосредственно световой поток, — люмен, сокращенно — лм.

Световая отдача в конкретных цифрах описывает эффективность преобразования электрической энергии в световую и характеризует экономичность лампы. Чтобы получить только люмены, необходимо значение в лм/Вт умножить на значение мощности изделия в ваттах. Например, светоотдача 100-ваттной лампы накаливания составляет 15 лм/Вт. Значит теоретически она испускает свет в 1500 лм. В реальности всегда происходят потери в светосиле. В первую очередь, это обусловлено материалом самой лампы.

Рассмотрение движения световых волн в пространстве неизбежно приводит к возникновению понятия освещенности, потому что свет не светит сам в себя, он всегда направлен наружу от источника и делает другие предметы видимыми для человеческого глаза. Очевидно, что при этом он падает на поверхность определенной площади, отчего она становится освещенной.

Люкс — это единица измерения освещённости. Если световой поток в 1 люмен перпендикулярно и равномерно падает на участок поверхности единичной площади (1 м²), ее освещенность составит 1 люкс.

Абсолютное значение освещенности в люксах будет всегда кратно меньше значения светового потока в люменах для каждого конкретного источника света, так как связь между этими величинами обратно пропорциональна. Чем больше освещаемая площадь, тем характеристики освещенности хуже. Так, например, лампа накаливания в 1500 лм, помещенная в непрозрачный куб с площадью грани в 1 м², строго в его центре, то есть равноудаленно от всех его сторон, будет освещать всего 6 м² (4 боковые стороны по 1 м², 1 нижняя + 1 верхняя). Значит освещенность внутри такого куба составит:

1500 лм /6 м² = 250 лк.

Теперь пусть та же самая лампочка в люстре освещает квадратную — для удобства подсчета — комнату с длиной стены в 4 м. Это будет тот же куб с площадью каждой грани в 16 м², а общая площадь составит 96 м². При этом для чистоты подсчета лампочку следует подвесить в центре комнаты на отметке в 2 м от пола и потолка. Тогда освещенность в каждой точке комнаты составила бы:

1500 лм/96 м² = 15,625 лк.

На практике так никто не делает, максимальная длина подвеса люстры составляет всего 0,5 м. Ориентируясь на визуальные ощущения, человек почувствует, что непосредственно под лампочкой света больше, чем в углах комнаты, а лучше всего освещена небольшая площадь на потолке в месте крепления светильника при условии, что его конструкция открыта сверху.

В быту, кроме светосилы, на освещенность поверхности влияют следующие факторы:

  • расстояние до источника света;
  • расположение источника света;
  • его форма;
  • угол падения света (поворот и наклон цоколей);
  • кривизна самой поверхности;
  • изменение пространственных характеристик;
  • отражающие свойства поверхности (например, черную бархатную поверхность и зеркала следует освещать по-разному).

Поэтому на практике теоретические подсчеты бесполезны, и для измерения освещенности пользуются люксметром.

Какие бывают светодиоды

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Светодиоды вполне могут заменить обычные лампы накаливания

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Применение светодиодной подсветки в интерьере кухни

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Что такое люминофор светодиода?

Светодиодный люминофор — это вещество, обладающее феноменом флюоресценции, которое может поглощать свет или другое электромагнитное излучение, тем самым создавая свет с более длинными волнами. Люминесценция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения.

Это важный компонент для белых светодиодов, обеспечивающий широкий спектр и высокий индекс цветопередачи (CRI).

Два способа создания белого цвета у светодиода

  • Смешанный белый свет. Один из подходов — смешать свет от нескольких цветных светодиодов для создания спектрального распределения мощности которое выглядит белым. Аналогичным образом, так называемые 3-х фосфорные люминесцентные лампы используют три люминофора, каждый из которых излучает относительно узкий спектр синего, зеленого или красного света при получении ультрафиолетового излучения от ртутной дуги в трубке лампы. Расположив красный, зеленый и синий светодиоды рядом друг с другом и правильно смешав количество их выходного сигнала, полученный свет станет белым по внешнему виду.
  • Белый свет с преобразованием люминофора. Другой подход к созданию белого света — использование люминофоров вместе с коротковолновыми светодиодами. Например, когда один люминофор, используемый в светодиодах, освещается синим светом, он излучает желтый свет, имеющий довольно широкое спектральное распределение мощности. За счет включения люминофора в корпус синего светодиода с максимальной длиной волны от 450 до 470 нанометров часть синего света будет преобразована люминофором в желтый свет. Оставшийся синий свет при смешивании с желтым светом дает белый свет. Новые люминофоры разрабатываются для улучшения цветопередачи.

Толщина и концентрация люминофора — второстепенные факторы для упаковки белых светодиодов. Это связано с тем, что световой поток и цвет светодиода регулируются в основном за счет изменения толщины и концентрации люминофора после выбора преобразователей люминофора. Толщина и концентрация люминофора могут варьироваться в процессе производства, и они влияют на оптическую стабильность белых светодиодов.

Схемы включения RGB светодиода

Многоцветные светодиоды, иначе называемые RGB-светодиодами, применяются для индикации, а также создания динамически изменяющейся по цвету подсветки. Фактически, ничего сложного в этих светодиодах нет, однако, в службу технической поддержки компании «ЧИП и ДИП» с завидным постоянством приходят письма с вопросами – как правильно подключить RGB-светодиод, какой источник питания выбрать, обязательно ли нужны специализированные источники питания, или можно обойтись тем, что есть «под рукой»?

Для того, чтобы ответить на все эти вопросы необходимо разобраться с тем, а что же представляет из себя RGB-светодиод, и почему возникают такие вопросы…

Фактически, RGB-светодиод представляет собой сборку из трех светодиодов красного, зеленого и синего цвета, расположенных в одном корпусе. И вот тут возникает первая сложность – кристаллы светодиодов могут быть соединены по схеме с общим катодом, с общим анодом, и с раздельными выводами.

Схему включения кристаллов можно определить визуально – светодиоды с общим катодом, или анодом имеют 4 вывода, светодиоды с раздельными выводами – 6 выводов. Собственно, на этом сложности и заканчиваются. В любом из этих случаев можно рассматривать подключение RGB-светодиода, как подключение трех обычных светодиодов, соединенных параллельно.

На что следует обратить внимание? В первую очередь обязательно необходимо ознакомиться с документацией на RGB-светодиод. Так как используются три различных кристалла, то и параметры их могут различаться

Так, например, для мощного RGB-светодиода TDS-P030L4RGB значение прямого напряжения для кристаллов красного и синего цвета составляет MAX 15VDC, для кристалла зеленого цвета — MAX 17VDC. То есть, если подключить светодиод к источнику питания «напрямую», то одни кристаллы будут светиться ярче, другие – слабее. Поэтому, также как и в случае с обычными светодиодами, нам необходимо включить в схему «гасящее» сопротивления для каждого канала.

Расчет «гасящего» сопротивления здесь приводить не будем. Подробно об этом рассказывается в видеоролике, размещенном на сайте нашей компании. При этом необходимо иметь в виду, что резистор должен рассчитываться на троекратную величину потребления тока. В этом случае, даже в случае перегорания одного из кристаллов оставшиеся не выйдут из строя. Таким образом, для включения RGB-светодиода можно использовать как специализированные блоки питания, так и источники питания, предназначенные для других целей. Необходимо лишь помнить, что источник питания должен иметь «запас» по току в 15-20%.

Но для управления RGB-светодиодом нам необходимо устройство управления светодиодом, или контроллер. Простейших контроллер представляет собой обычный трехклавишный выключатель. Схема такого включения приведена на рисунке. В этом случае мы получим устройство, с помощью которого можно создать семь цветов свечения светодиода.

А вот для динамического плавного изменения цвет свечения нам не обойтись без контроллера управления цветом светодиода. Возможно использование готовых контроллеров, схемы управления на базе Arduino, с использованием ШИМ-контроллеров. Подробно останавливаться на этом не будем, т.к. полную информацию об этом можно легко найти в Интернете.

Источник

Фотометрические характеристики

Номинальный световой поток (люмены: лм)

Традиционно показатель светового потока зависел от интенсивности света, излучаемого источником освещения, независимо от влияния светильника и любого оптического устройства управления. Нет причин, по которым производители светодиодов должны были указывать какие-либо характеристики иначе, чем они есть на самом деле, но этот простой параметр намеренно вводил в заблуждение из-за того, что некоторые светодиоды не являются независимыми устройствами, а встроены непосредственно в светильник. Но этого следует коснуться при обсуждении параметра «Коэффициент полезного действия источника света» (см. ниже). В отношении светодиодных панелей указание этих параметров особенно вводило в заблуждение.

Эфективность светодиодного светильника (люмен на Ватт: лм / Вт)

Это тот показатель, за которым «гнался» каждый производитель последние десять лет и даже более длительный период. Сначала настоящей целью было превысить уровень эффективности, который требовался в соответствии с нормативными положениями, регламентирующими уровень энергоэффективности. Эта цель была достигнута несколько лет назад.

Есть предположение, что стремление к постоянному повышению показателей энергоэффективности приведет к ухудшению качества осветительных систем, поскольку более высокая светоотдача светильников будет способствовать меньшей равномерности освещенности в пространстве, и все это в попытке удержать показатели световой эффективности.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

Таблица напряжения светодиодов

Чтобы светодиод обеспечивал при работе все характеристики, заданные его конструкцией и технологией изготовления, ему нужно обеспечить расчетное электропитание. Например, подать на его анод и катод напряжение, которое будет немного больше прямого напряжения p-n перехода. Избыток напряжения следует «погасить» на последовательно включенном резисторе. Резистор называется токоограничивающим. Он служит для того, чтобы не допустить превышения тока через p-n переход.

Таблица. Прямое напряжение p-n перехода светодиода цветного свечения.

Цвет свечения Напряжение рабочее, прямое, В
белый 3,5
красный 1,63–2,03
оранжевый 2,03–2,1
желтый 2,1–2,18
зеленый 1,9–4,0
синий 2,48–3,7
фиолетовый 2,76–4
инфракрасный до 1,9
ультрафиолетовый 3,1–4,4

Мощные светодиоды, их характеристики

Мощные светодиоды на основе COB-матриц. У крупных моделей в углах корпуса имеются отверстия для крепления. Модели небольших размеров крепятся пайкой на печатную плату.

В дополнение к обычным характеристикам светодиодов у мощных моделей добавляются несколько дополнительных характеристик:

  • номинальная мощность, Вт;
  • размер чипа, мм;
  • номинальный рабочий ток кристалла или матрицы;
  • срок службы, связанный со стандартами L 70, L80 и др.

Маломощные светодиоды

По величине потребляемой мощности – это светодиоды от 0,05 до 0,5 Вт, рабочий ток – 20-60 мА (средней мощности – 0,5-3 Вт, ток 0,1-0,7 А, большой – более 3 Вт, ток 1 А и более).

Конструктивно к маломощным светодиодам относятся несколько групп LED-излучателей света:

  • светодиоды в корпусах SMD обычные и сверхъяркие;
  • диоды типа DIP в цилиндрических корпусах – для монтажа в отверстия печатных плат;
  • в корпусах типа «пиранья» – для монтажа в отверстия.

Маломощные светодиоды в разных корпусах.

На картинке светодиоды сверху вниз:

  1. В цилиндрических корпусах типа DIP – с гибкими проволочными выводами для пайки в отверстия платы.
  2. В корпусах типа «пиранья», они же Superflux, пайка в отверстия.
  3. В корпусах с планарными выводами для монтажа на контактные площадки одно- и двухсторонних печатных плат или в «колодцы» многослойных плат.

Максимальная светоотдача

Какова может быть максимально возможная светоотдача в идеальных условиях? В теории она достигает 683 Люмен/ватт.

Но это возможно только при длине волны 555нм (зеленый цвет).

В нашей сетчатке находится около семи миллионов рецепторов – красных, синих и зеленых. Более половины из них, именно зеленые. Поэтому зеленый цвет мы воспринимаем как самый яркий.

Многие заблуждаются, считая, что достаточно пропустить через кристалл светодиода max ток, и тем самым будет достигнуто максимальное значение светоотдачи. Это не так.

Для этого достаточно тока, в пределах от тридцати до шестидесяти процентов от его максимальных значений.

Поэтому светодиоды в идеале должны быть именно недогружены.

При реальных замерах дешевых светодиодов с мелкими кристаллами хорошо видно, что использовать их больше 30% не рационально.

В итоге, при меньшей загрузке вы получаете:

больший срок их службы

меньшую температуру нагрева

наибольшую светоотдачу

Правда есть один негативный момент – понадобится их большее количество. А это увеличит стоимость изделия.

Понятие освещенности и светового потока

Освещенность рассчитывается как соотношение светового потока к площади поверхности, на которую он направлен, и измеряется в люксах. Один люкс равен одному люмену на квадратный метр (если до поверхности дошел весь световой луч).

Однако при расчетах необходимо учитывать некоторые нюансы:

  • уровень освещенности снижается обратно пропорционально квадрату расстояния от лампочки до освещаемого предмета;
  • освещенность уменьшается, если световой поток падает под углом более 90 градусов;
  • освещенность прямо пропорциональна силе света (мощности источника).

В помещении с чистым воздухом для расчета освещенности используется формула: Е = I / S2, где:

  • I – сила светового луча,
  • S – расстояние от лампы до предмета.

Световой поток характеризует общее количество света, выделяемого прибором. Но и тут есть нюансы. Если световой луч рассеивается под разным углом, значение меняется. Лампа накаливания со световым потоком 1000 лм распределяет его почти на 360 градусов, освещая не только пол, но и стены, потолок. На пол попадает всего 600-700 лм. Если сравнивать с Led лампочкой со световым лучом 1000 лм и углом излучения 180 градусов, на пол попадет почти 1000 лм. Это значит, что при одинаковом световом потоке светодиодная лампочка эффективнее, если нужно осветить пол.

Это неверный подход. Световой поток действительно зависит от мощности, но не у светодиодных ламп. Диоды с одинаковой мощностью, изготовленные разными производителями, по световому потоку отличаются.

Примеры можно посмотреть в таблице:

Бренд Мощность (Вт) Заявленный световой поток (лм) Действительный световой поток (лм)
GE 4 215 230
Panasonic 4 215 210
Philips 4 215 347
Philips 6 430 364
Panasonic 6 430 491
V-light 7 430 369
Airam 8 430 617
GE 8 430 488
Verbatim 9 430 443
V-light 10 730 679
Megaman 10 730 680
Verbatim 10 730 906
Megaman 11 960 858

При покупке светодиодных ламп следует ориентироваться на производителя, световой поток (люмены) и угол излучения. У ведущих производителей эти данные видны на упаковках. Если информации нет, изделие не стоит покупать.

Расчет эффективности

Изначально подсчитывается среднее энергопотребление. Для этого нужно умножить мощность на время. Например, в эксперименте использовалась светодиодная лампа мощностью ровно 50 Вт, то за 15 минут (что аналогично 900 сек.) затрачено 45000 Дж. Теперь произведем расчет КПД для светодиода, исходя из определения затрат в обоих экспериментах

Первый эксперимент: когда светодиод был заклеен, вода нагрелась с 22 до 57 градусов. Температурная разница составила 35 градусов. Зная удельную теплоемкость воды (4,2 тыс. Дж) и ее массу (250 мл – 0,25 кг), а также что потери на нагрев стекла колбы на каждый градус составили порядка 131 Дж, плюс на разогрев медного (теплоемкость 381 Дж) при массе 28 грамм светодиода, подставляем значения в формулу:

4200х0,25х35 (для воды 36750 Дж) + 131х35 (для колбы 4585 Дж) + 381х0,028х35 (для светодиода 373 Дж) = 41708 Дж.

Из соотношения получаем: 41708/45000 = 93%. Следовательно, порядка 7% – чистые тепловые потери от общего КПД данной светодиодной лампы.

Второй эксперимент: в аналогичном эксперименте с открытым светодиодом разница в нагреве воды составила 25 градусов подставляя ее значение в выше стоящую формулу, получаем = 26250 + 3275 + 266 = 29791 Дж.

Соотносим его с расчетной мощностью: 29791/45000 = 66%.

На чистую световую энергию ушло порядка 34% энергии, однако с учетом чисто тепловых потерь, равных 7%, КПД = всего 27%!

КПД фирменных светодиодов равен 24-28%. При этом это еще далеко не худший результат. Так у некачественных дешевых аналогов он может оказаться в 2-3 раза меньше.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: