Все о драйверах для светодиодных светильников

Аграрное будущее

Большую выгоду бездрайверные светильники могут принести для освещения теплиц, если там есть и естественное освещение, а персонал продолжительное время работает в дневное время. Естественно, светильники должны соответствовать и действующим нормам по коэффициенту мощности.

Полное отсутствие пусковых токов является важным преимуществом для сельской местности. Низкая стоимость бездрайверных светодиодных светильников, простота установки и обслуживания позволяют сделать проект внедрения светодиодного освещения экономически выгодным.

Положительный опыт использования светильников с лампами ДНаТ, у которых К п доходит до 95%, позволяет утверждать, что наличие пульсаций у бездрайверных светодиодных светильников не окажет негативного влияния на рост сельскохозяйственных культур. Но в птицеводстве применять бездрайверные светильники нельзя, поскольку мерцания угнетают развитие — у птиц зрение более быстродействующее, чем у людей. Возможность применения бездрайверных светодиодных светильников в животноводстве требует дополнительных исследований.

Полное отсутствие пусковых токов является важным преимуществом для сельской местности, где электросети зачастую находятся не в лучшем состоянии. Низкая стоимость бездрайверных светодиодных светильников, простота установки и обслуживания, когда не надо вызывать в далекую деревню дорогостоящих специалистов, позволяют сделать проект внедрения светодиодного освещения экономически выгодным.

Алексей ВАСИЛЬЕВ

Китайские преобразователи – что в них особенного

Китайские друзья славятся умением подделать оборудование так, что им становится невозможно пользоваться. По отношению к драйверам можно сказать так же. Приобретая китайское устройство будьте готовыми к завышенным заявленным характеристикам, низкому качеству и быстрому выходу преобразователя из строя. Если же собирается первый в жизни LED-светильник, потренироваться и получить навыки в радиоэлектронике, такие изделия незаменимы по причине низкой стоимости и простоты исполнения.

Если добавить в схему китайского преобразователя конденсатор, срок службы лампы увеличится

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов, направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента, и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом. Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений. Сделать своими руками такую схему легко, достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими. Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые. Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно, затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный — «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ. В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Дополнительная тренировка

Для дополнительной тренировки можно попробовать паять различные ненужные платы от компьютеров и смартфонов. На материнских платах существует много SMD и DIP компонентов. Только долгие и упорные часы практики помогут развить навыки в пайке.

Сетка

В качестве упражнения можно попробовать спаять сетку из проводов. Качество пайки оценивается по нагрузке на эту спаянную сетку проводов. Если паяные соединения не рвутся под нагрузкой, то пайка отличная.

Конструкторы

Так же отлично помогают радиоконструкторы.

Они учат понимать электрические схемы и тонкости пайки. Следует начинать с простых конструкторов, например с мигалок или дверных замков. По мере повышения мастерства, можно повышать уровень сложности, доходя до сложных LED кубиков.

Пайка кислотой

Кислота используется только в крайнем случае, когда сильно окисленная поверхность не поддается лужению. Все детали, провода и разъемы могут отлично паяться без кислоты.Подробнее о паяльной кислоте

Понятие сетевого драйвера и его предназначение

Драйвер — электронный компонент, на который поступает напряжение переменного тока, происходит стабилизация и выходит напряжение постоянного тока

Здесь важно понимать, что речь идет о получении тока. Для преобразования напряжения используются обычные блоки питания (на корпусе указывается значение выходного напряжения)

Блоки питания эксплуатируются в диодных лентах.

Главная характеристика преобразователя для светодиодных осветительных приборов — выходной ток. Для нагрузки используют вспомогательные led-диоды или другие полупроводники. Практически всегда драйвер питается от промышленной сети 220 В, а диапазон напряжения на выходе начинается от 2 – 3 и заканчивается десятками Вольт. Чтобы подключить три светодиода на 3 Вт, необходим электронный драйвер с выходным напряжением 9 – 21 В и током 780 мА. При небольшой нагрузке универсальное устройство характеризуется низким коэффициентом полезного действия (КПД).

Для питания фар транспортных средств применяют источник с постоянным напряжением от 10 до 35 В. Если мощность невысокая, драйвер необязателен, но потребуется соответствующий резистор. Данный компонент — незаменимая часть бытового выключателя, но при коммутации led-диода к переменной сети 220 В нельзя рассчитывать на надежную и долговечную работу.

Как сделать простую светодиодную лампочку

Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,и пустая алюминиевая 330 мл банка

Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.

Итак, теперь само изготовление:

  1. Обмотайте лентой банку, как показано на рисунке.
  2. Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
  3. Вход ИП проводами припаяйте к цоколю основания лампы.
  4. Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
  5. Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.

Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.


Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Как изготовить драйвер для светодиодов своими руками

Для работы требуется:

  • маломощный
    паяльник (25-40 Вт);
  • флюс
    (желательно нейтральный);
  • оловянно-свинцовый
    припой;
  • кусачки
    и пласкогубцы;
  • многожильные
    медные провода в изоляции с сечением 0,35-1 м2;
  • изолента
    (термоусадочная трубка);
  • мультиметр;
  • печатная
    плата.

Перечень компонентов зависит от того,
какой блок питания необходимо сделать.

Пример
расчета

Самая простая схема для подключения
светодиодов к источникам с низким напряжением. Прежде всего, рассчитывается
мощность блока, базируясь на параметры источников света. Вольтаж должен быть на
20-30% выше показателя подключаемой лампочки или ленты. На выходе напряжение
зависит от падения вольтажа на светодиоде.

Если нужно подключить 6 светодиодов, падение напряжения в которых 2 В (на каждом), требуется блок на 12 В и 300 мА при последовательном размещении. Чтобы подключить те же элементов в 2 параллельные линии, необходимы другие показатели – напряжение 6 В, ток 600 мА. Для таких диодов подойдет простой драйвер, состоящий из диодного моста, 2-х конденсаторов и резистора.

Диодный мост состоит из 4-х
разнонаправленные диодов, задача которых – превратить синусоидальный переменный
электроток в пульсирующий. К плюсу моста (со стороны входа) присоединяется пленочный
конденсатор, к минусу – сопротивление, параллельно –электролитический конденсатор
(для сглаживания перепадов напряжения). Значение электротока зависит от метода подключения
(если диодов несколько, их можно соединить последовательно или параллельно).

Для мощного
светодиода (например, 3Вт) подойдет стабилизатор-драйвер,
созданный на основе микросхемы LM317
и резистора. У стабилизатора LM317 постоянный вольтаж 1,25. Если лампа новая,
ей требуется ток 700 мА (максимальное значение). Чтобы рассчитать сопротивление
резистора, нужно напряжение разделить на ток:

1,25/0,7 = 1,78 Ом.

Такого резистора нет, поэтому нужно
купить элемент на 1,8 Ом.

Так как микросхема LM317 предназначена
для тока до 1,5 А, потребуется радиатор.

Драйвер для трех led по 1 Втможно
сделать из зарядного устройства мобильного телефона, если немного
усовершенствовать микросхему. Нужно снять корпус и выпаять имеющийся резистор и
припаять другой (на 5 кОм). Светодиоды соединить последовательно и подключить к
выходному каналу. Входные каналы заменить шнуром для присоединения к сети.

Для светодиодного источника с мощностью 10 Вт можно собрать блок питания на электронной плате люминесцентной лампы на 20 Вт. Купить нужно дроссели, диоды, конденсаторы и транзисторы.

Важные нюансы сборки

Падение напряжения на светодиодах 3-30 В.
Это очень мало, если сравнивать с вольтажом сети. Готовые микросхемы отличаются
только показателями входного напряжения. При выборе необходимо учесть, что
падения напряжения на источниках света должно составлять 10-20% от вольтажа драйвера.
Поэтому не стоит делать на основе микросхемы блок для подключения к сети, если
имеется 1 или 2 диода на 3-6 В.

Все элементы на плате размещаются так, чтобы между ними было минимальное расстояние и количество перемычек. Полярность и распиновку лучше проверить в технической документации. Если элементы не новые, обязательна проверка мультиметром. Паяльник лучше выбрать небольшой, способный нагреваться до 260оС.

Конденсаторы, резисторы, диоды,
микросхемы паять достаточно сложно, если их нельзя предварительно закрепить на
плате. Чтобы повысить качество пайки, желательно залудить места, куда будут
ставиться компоненты. Для этого капается немного флюса, на паяльник берется
припой и наносится на то же место.

Каждый элемент нужно брать пинцетом за
ножку, которую нужно припаять, и приставить к месту пайки. Потом на ножку
наносится капля флюса, берется паяльник и подносится к припаиваемой ножке.
Прикоснуться достаточно примерно на секунду, так как припой и флюс уже есть.
Ножка сразу погружается в припой, нанесенный в процессе лужения.

Если элементы можно закрепить на плате,
припой должен быть с флюсом. В одну руку нужно взять паяльник, в другую –
проволоку. Место пайки греется 3-4 секунды, потом к нему подносится припой. При
соприкосновении элемента, паяльника и проволоки последняя плавится, флюс
вытекает, через секунду паяльник можно убрать.

Одновременно с паяльником желательно купить специальный отсос и очки. Если случится, что элемент припаялся не туда или на месте пайки образовался огромный бугор, нужно разогреть припой, взять отсос и нажать на кнопку. Все лишнее с платы моментально исчезнет. При работе с проводами и ножками элементов они могут отпружинить. Чтобы горячий припой не попал в глаза, работать желательно в очках.

Собираем диммер своими руками

Схема на симисторах:

В этой схеме задающий генератор построен на двух симисторах, триаке VS1 и диаке VS2. После включения схемы конденсаторы начинают заряжаться через резисторную цепочку. Когда напряжение на конденсаторе достигает напряжения открытия симистора, через них начинает течь ток, а конденсатор разряжается

Чем меньше сопротивление резистора, тем быстрее заряжается конденсатор, тем меньше скважнось импульсов

Изменение сопротивления переменного резистора регулирует глубину стробирования в широком диапазоне. Такую схему можно использовать не только для светодиодов, но и для любой сетевой нагрузки.

Схема подключения к сети переменного тока:

Диммер на микросхеме N555

Микросхема N555 представляет собой аналогово-цифровой таймер. Важнейшее ее преимущество – способность работать в большом диапазоне питающего напряжения. Обыкновенные микросхемы с TTL логикой работают от 5В, а логическая единица у них – 2,4В. КМОП серии более высоковольтные.

Но схема генератора с возможностью изменения скважности получается достаточно громоздкая. Так же у микросхем со стандартной логикой повышение частоты уменьшает напряжение выходного сигнала, что не даёт возможность коммутировать мощные полевые транзисторы и подходит лишь для небольших по мощности нагрузок

Таймер на микросхеме N555 идеально подходит для шим-контроллеров, поскольку одновременно позволяет регулировать и частоту, и скважность импульсов. Напряжение на выходе составляет около 70% напряжения питания, за счёт чего ей можно управлять даже мосфетовскими полевыми транзисторами с током до 9А

При крайне низкой стоимости используемых деталей затраты на сборку составят 40-50 рублей.

А эта схема позволит управлять нагрузкой на 220В с мощностью до 30 Вт:

Микросхему ICEA2A после небольшой доработки можно безболезненно заменить менее дефицитной N555. Затруднение может вызвать необходимость самостоятельной намотки трансформатора. Мотать обмотки можно на обычном Ш-образном каркасе от старого перегоревшего трансформатора на 50-100Вт. Первая обмотка — 100 витков эмалированного провода диаметр 0.224мм. Вторая обмотка — 34 витка проводом 0.75мм (площадь сечения допустимо уменьшить до 0.5мм), третья обмотка – 8 витков проводом 0.224 – 0.3мм.

Диммер на тиристорах и динисторах

Светодиодный диммер 220В с нагрузкой до 2А:

Это двухмостовая полуволновая схема состоит их двух зеркальных каскадов. Каждая полуволна напряжения проходит через свою цепочку тиристор-динистор

Глубина скважности регулируется переменным резистором и конденсатором

При достижении определённого заряда на конденсаторе он открывает динистор, через который течёт ток на управляющий тиристор. При смене полярности полуволны процесс повторяется во второй цепочке.

Диммер для светодиодной ленты

Схема диммера для светодиодной ленты на интегральном стабилизаторе серии КРЕН.

В классической схеме подключения стабилизатора напряжения, значение стабилизации задается резистором, подключённым к управляющему входу. Добавление в схему конденсатора С2 и переменного резистора превращает стабилизатор в некое подобие компаратора.

Преимущество схемы в том, что она совмещает сразу и драйвер питания и диммер, поэтому подключение не требует дополнительных цепей. Недостаток – при большом количестве светодиодов на стабилизаторе будет значительное тепловыделение, что требует установки мощного радиатора.

Как подключить диммер к светодиодной ленте зависит от задач диммирования. Подключение перед драйвером питания светодиодов позволит регулировать только общую освещённость, а если собрать несколько диммеров для светодиода своими руками и установить их на каждый участок светодиодной ленты уже после блока питания, появится возможность регулировать зональное освещение.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Виды драйверов

Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.

Линейные и импульсные

В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.

Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.

Линейная схема питания:

Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.

Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.

Плюсы линейной схемы:

  • простота;
  • дешевизна;
  • относительная надежность.

Наряду с линейными схемами, стабилизировать ток и напряжение можно путем импульсной стабилизации:

  • после нажатия кнопки заряжается конденсатор;
  • после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
  • если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.

Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.

Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.

Упрощенная схема импульсной стабилизации:

Электронные, диммируемые и на базе конденсаторов

От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.

Виды драйверов по принципу устройства:

  • Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА. Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора. Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.
  • Диммируемые. Особенность диммируемых драйверов – возможность управления яркостью светильника. Регулировка основана на изменении тока на выходе, который и определяет яркость светопотока. Драйвер можно включать в схему двумя способами: между светильником и стабилизатором или между источником питания и преобразователем.
  • На основе конденсаторов. Это недорогие модели, используемые для бюджетных светодиодных светильников. Если в схеме производитель не предусмотрел сглаживающий конденсатор, то на выходе наблюдается пульсация. Другой минус – недостаточная безопасность. Плюс подобных моделей – высокий КПД, стремящийся к 100 %, и простота схемы. Подобные драйверы легко собрать своими руками.

В корпусе и без него

Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.

Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.

Линейный драйвер для светодиодов своими руками

С теорией закончим, перейдем к практике и попробуем собрать линейный драйвер своими руками. Проще всего эту задачу решить при помощи широко распространенного интегрального стабилизатора КР142ЕН12А (его импортный аналог – LM317). Найти его можно в любом соответствующем магазине, и стоит он в районе 20 рублей. Необходимые материалы и инструменты: паяльник, тестер и провода.

Эта микросхема рассчитана на входное напряжение до 40 В, выдерживает ток до 1.5 А и, главное, имеет встроенную защиту от перегрузки, короткого замыкания и перегрева. Правда, это стабилизатор напряжения, а драйвер должен стабилизировать ток. Но мы этот вопрос решим, чуть изменив типовую схему включения микросхемы.

Здесь микросхема применяется в роли регулирующего элемента, стабилизирующего ток на заданном уровне. Какой величины этот ток будет? Все зависит от сопротивления резистора R1, номинал которого рассчитывается по простой формуле: R = 1.2/I, где:

  • R – сопротивление в омах;
  • I – необходимый ток в амперах.

Давай попробуем построить драйвер для тех светодиодов, из которых мы делали настольную лампу в начале статьи. Итак, нам нужен драйвер, на напряжение 9.9 В выдающий стабилизированный ток 300 мА. Делаем расчет номинала резистора R1: 1.2/0.3= 4 Ом. Поскольку резистор стоит в токовой цепи, мощность его выбираем не менее 4 Вт.

Здесь отлично подойдут резисторы, используемые практически во всех телевизорах в качестве гасящих по питанию (такие лежат в любом магазине). Они имеют мощность 2 Вт и сопротивление 1-2 Ом. Если резисторы одноомные, то их понадобится 4 шт, если двухомные – 2 шт. Соединяем их последовательно, чтобы сопротивления сложились.

Крепим микросхему на небольшой радиатор и подключаем к выходу нашего драйвера цепочку из трех последовательно соединенных светодиодов, соблюдая полярность. Можно включать. Но куда? Какое входное напряжение у этого драйвера? Вот тут начинается самое интересное. Напряжение на входе должно быть минимум на 2-3 вольта больше того, что необходимо светодиодам, но не более 40 В – больше микросхема не выдержит.

В нашем конкретном случае светодиодам нужно 9.9 В. Значит, на вход можно подать постоянное напряжение величиной от 12 до 40 В. Причем напряжение это может быть нестабилизированное. Подойдет автомобильный аккумулятор, блок питания ноутбука или ПК, понижающий трансформатор с диодным мостом. Подключаем, соблюдая полярность, и наш фонарь готов!

Вот и закончилась наша беседа о led драйверах. Надеюсь, теперь ты не только знаешь, как работает этот важный узел, но и сможешь его правильно выбрать, подключить, а при необходимости даже собрать своими руками.

Следующая
СветодиодыПараметры и технические характеристики светодиодов типоразмера SMD 3014

Методы диагностики

Простейшим способом, которым чаще всего пользуют радиолюбители, является проверка светоизлучающих диодов мультиметром на работоспособность при помощи щупов. Способ удобен для всех типов светоизлучающих диодов, независимо от их исполнения и количества выводов. Установив переключатель в положение «прозвонка, проверка на обрыв», щупами касаются выводов и наблюдают за показаниями. Замыкая красный щуп на анод, а черный на катод исправный светодиод должен засветиться. При смене полярности щупов на экране тестера должна оставаться цифра 1.

Для точной проверки многоцветных LED с несколькими выводами необходимо знать их распиновку. В противном случае придется наугад перебирать выводы в поисках общего анода или катода. Не стоит бояться тестировать мощные светодиоды с металлической подложкой. Мультиметр не способен вывести их из строя, путём замера в режиме прозвонки.

Проверку светодиода мультиметром можно выполнить без щупов, используя гнёзда для тестирования транзисторов. Как правило, это восемь отверстий, расположенных в нижней части прибора: четыре слева для PNP транзисторов и четыре справа для NPN транзисторов. PNP транзистор открывается подачей положительного потенциала на эмиттер «Е». Поэтому анод нужно вставить в гнездо с надписью «Е», а катод – в гнездо с надписью «С». Исправный светодиод должен засветиться. Для тестирования в отверстиях под NPN транзисторы нужно сменить полярность: анод — «С», катод – «Е». Таким методом удобно проверять светодиоды с длинными и чистыми от припоя контактами

При этом неважно, в каком положении находится переключатель тестера


Проверка инфракрасного светодиода происходит также, но имеет свои нюансы из-за невидимого излучения. В момент касания щупами выводов рабочего ИК светодиода (анод – плюс, катод – минус) на экране прибора должно высветиться число около 1000 единиц. При смене полярности на экране должна быть единица.

Для проверки ИК диода в гнёздах тестирования транзисторов дополнительно придётся задействовать цифровую камеру (смартфон, телефон и пр.) Инфракрасный диод вставляют в соответствующие отверстия мультиметра и сверху на него направляют камеру. Если он в исправном состоянии, то ИК излучение будет отображаться на экране гаджета в виде светящегося размытого пятна.

Проверка мощных SMD светодиодов и светодиодных матриц на работоспособность кроме мультиметра требует наличия токового драйвера. Мультиметр включают последовательно в электрическую цепь на несколько минут и следят за изменением тока в нагрузке. Если светодиод низкого качества (или частично неисправный), то ток будет плавно нарастать, увеличивая температуру кристалла. Затем тестер подключают параллельно нагрузке и замеряют прямое падение напряжения. Сопоставив измеренные и паспортные данные из вольт-амперной характеристики можно сделать вывод о пригодности LED к эксплуатации.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: