Разновидности 12В стабилизаторов
Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:
- линейная;
- импульсная.
Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.
Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов. Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов
Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку
Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку
Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.
К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.
Классический стабилизатор
Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.
Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:
- при подаче на стабилитрон Uвх < 12 В элемент находится в закрытом состоянии;
- при поступлении на элемент Uвх > 12 В он открывается и удерживает заявленное напряжение постоянным.
Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя. Схема классического линейного СН. Схема классического линейного СН
Схема классического линейного СН
Интегральный стабилизатор
Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.
Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.
Схема СН на ИМС
Назначение устройства
Принцип работы терморегулятора — обратная связь, при которой одна контролируемая величина косвенно влияет на другую
Для искусственного выведения птицы очень важно сохранять нужную температуру, ведь даже незначительный сбой и отклонения могут сказаться на количестве вылупившихся птиц — терморегулятор для инкубации именно для этого и предназначен
Прибор нагревает элементы таким образом, чтобы температура оставалась неизменной даже при изменениях в окружающем воздухе. В уже готовом приборе есть датчик для терморегулятора инкубатора, который контролирует температурный процесс.
Знаете ли вы? Когда-то терморегуляторы применяли для аквариумов с тропическими рыбами. Эта необходимость возникла по причине того, что многие модели имели механический регулятор с тэном. Следовательно, поддерживали собственную температуру. Такие приборы хорошо работали только в помещениях со стабильной температурой.
Простое зарядное устройство для литиевого аккумулятора.
Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:
Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.
Читать также: Чем можно заменить варистор
А теперь список номиналов компонентов схемы:
- DA1 – TL431C;
- R1 – 2,2 Ом;
- R2 – 470 Ом;
- R3 – 100 кОм;
- R4 – 15 кОм;
- R5 – 22 кОм;
- R6 – 680 Ом (нужен для подстройки выходного напряжения);
- VT1, VT2 – BC857B;
- VT3 – BCP68-25;
- VT4 – BSS138.
21 thoughts on “ TL431 схема включения, TL431 цоколевка ”
К1242ЕР1АП производства «Интеграл» Минск
Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной. Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.
Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.
Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.
А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное
Как сделать терморегулятор своими руками
В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:
В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:
Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814. Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.
Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:
Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая. Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра. Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.
Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.
В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:
Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:
Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:
Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки амперметр можно померить силу тока, отдаваемую в нагрузку:
Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:
Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:
Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:
Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит. Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.
Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.
Источник
Tl431 Схемы Подключения
К недостатку можно записать довольно большое падение напряжения а следовательно и мощности на транзисторе VT1. Принцип работы TL легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает точнее он не превышает 1 мА.
При уменьшении освещенности увеличивается сопротивление фототранзистора. Чтобы увеличить токи стабилизации одного транзистора становится мало, нужен промежуточный усилительный каскад.
Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит. Индикатор напряжения на светодиодах. Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах. Индикатор пониженного напряжения Рисунок 3. Главная же ее особенность в том, что при помощи внешнего делителя напряжение стабилизации можно изменять в пределах 2,5…30 В. Смотрите сами, какие есть в вашем распоряжении. Его можно сделать и на микросхеме tl Описание, распиновка, схема включения, datasheet Следующая схема имеет два режима ограничения: по току; по напряжению; Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства. Регулируемый стабилизатор напряжения на Tl431 и полевом транзисторе.
Технические характеристики
ИС tl431a описание которой объясняет её работу, имеет следующие параметры:
- интервал Uвх – от 2,5 до 36В;
- Rвых – 0,2 Ом;
- допустимый ток в прямом направлении – от 1 до 100 мА;
- линейка погрешности (%) – 0,5%, 1%, 2%.
Микросборка не содержит в своём составе свинца, термостабильна на всём интервале рабочей температуры и отличается низким уровнем выходного шума.
Точностные характеристики
Стабилизаторы тока tl431имеют точность заявленных по паспорту завода-изготовителя характеристик. Главный параметр UREF=2,495 В. Он определялся при следующих условиях:
- при токе через катод 10 мА;
- при Т окр.ср. = +250С;
- в режиме замыкания входа R на катод К.
Реальная величина UREF в определённой схеме может зависеть от нескольких причин:
- переменных температурных отклонений;
- воздействия напряжения UAK (между анодом и катодом);
- влияния IK (тока катода) на крутизну преобразований.
В любом случае отклонение значения UREF – не больше 20-40 мВ.
Частотные характеристики
АЧХ (амплитудно-частотная характеристика) стабилитрона tl431может быть описана простой моделью, включающей в себя идеальный преобразователь напряжения в ток. На его выходе в роли шунта выступает ёмкость С = 70 нФ. Когда стабилизатор работает на нагрузку, имеющую сопротивление Rн = 230 Ом, то АЧХ имеет спад, начиная с отметки 10 кГц.
К сведению. Если рассчитать частоту усиления без учёта Rн, то она равна примерно 2 МГц. Однако спад АЧХ на высших частотах происходит быстрее расчётной и составляет 1 МГц. Такие особенности не влияют на работоспособность ИС и могут не учитываться.
Терморегулятор для инкубатора — 2 — Конструкции простой сложности — Схемы для начинающих
Технические данные
Напряжение питания 220 В, 50 Гц Коммутируемая мощность активной нагрузки до 150 Вт Точность поддержания температуры ± 0,1 °С Диапазон регулирования температуры от +24 до +45°С. Принципиальная схема устройства показана на рисунке. На микросхеме DA1 собран компаратор. Регулировка заданной температуры производится переменным резистором R4. Термодатчик R5 подключен к схеме экранированным проводом в хлорвиниловой изоляции через фильтр C1 R7 для уменьшения наводок. Можно применить двойной тонкий провод, свитый в жгут. Терморезистор необходимо поместить в тонкую полихлорвиниловую трубку. Конденсатор С2 создает отрицательную обратную связь по переменному току. Питание схемы осуществляется через параметрический стабилизатор, выполненный на стабилитроне VD1 типа Д814АД. Конденсатор СЗ — фильтр по питанию. Балластный резистор R9 для уменьшения рассеиваемой мощности составлен из двух последовательно соединенных резисторов 22 кОм 2 Вт. С этой же целью транзисторный ключ на VT1 типа КТ605Б, КТ940А подключен не к стабилитрону, а к аноду тиристора VS1. Выпрямительный мост собран на диодах VD2-VD5 типа КД202К, М, Р, установленных на небольшие П-образные радиаторы из алюминия толщиной 1-2 мм площадью 2-2,5 см. Тиристор VS1 также установлен на аналогичный радиатор площадью 10-12 см. В качестве нагревателя используются осветительные лампы HL1…HL4, включенные последовательно-параллельно для увеличения срока службы и исключения аварийных ситуаций в случае перегорания нити накала одной из ламп.
Работа схемы. Когда температура термодатчика меньше заданного уровня, выставленного потенциометром R4, напряжение на выводе 6 микросхемы DA1 близко к напряжению питания. Ключ на транзисторе VT1 и тиристоре VS1 открыт, обогреватель на HL1…HL4 подключен к сети. Как только температура достигнет заданного уровня, микросхема DA1 переключится, напряжение на ее выходе станет близким к нулю, тиристорный ключ закроется, и обогреватель отключится от сети. При отключении обогревателя температура начнет понижаться, и когда она станет ниже заданного уровня, снова включатся ключ и обогреватель.
Детали и их замена. В качества DA1 можно применить К140УД7, К140УД8, К153УД2 подойдет практически любой операционный усилитель или компаратор. Конденсаторы любого типа на соответствующее рабочее напряжение. Терморезистор R5 типа ММТ-4 (или другой с отрицательным ТКС). Его номинал может быть от 10 до 50 кОм. При этом номинал R4 должен быть таким же. Устройство, выполненное из исправных деталей, начинает работать сразу.
Электрик №8 2001г стр. 23
Источник опорного напряжения TL431
В то же время ток светодиода очень круто зависит от питающего напряжения. Выпускаются радиоконструкторы для самостоятельной сборки своими руками.
Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.
Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит.
Общее описание TL TL — регулируемый или программируемый регулятор напряжения.
Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога 0,05…0,1В. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.
Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом.
Она также находит применение практически во всех маломощных импульсных источниках питания. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт.
Как сделать индикатор напряжения 2,5-36 Вольт
Принцип работы терморегулятора на TL431
Необходимый уровень напряжения, на управляющем выводе стабилитрона TL431, устанавливается посредством делителя на сопротивлениях Rl, R2, R3.
Резистор R3 – термистор, т.е. терморезистор с отрицательным ТКС (уменьшение сопротивления от нагрева). Если на контакте управления стабилитрона напряжение более 2,5В, микросхема пропускает ток и включает реле. Реле в свою очередь коммутирует управляющий вывод симистора, вследствие чего включается нагрузка (нагреватель).
Когда температура поднимается, сопротивление термистора уменьшается и из-за этого потенциал на управляющем выводе TL431 опускается ниже 2,5В, реле терморегулятора обесточивается и нагрузка отключается. Переменный резистор R1 позволяет просто устанавливать уровень необходимой температуры, при котором будет срабатывать терморегулятор.
Термистор типа СТ1, ММТ, КМТ. С помощью симистора КУ208Г можно управлять нагревателем до 1500 Вт с использованием радиатора для отвода тепла. Если же мощность нагревателя невелика (менее 200 Вт), то в этом случае надобность в радиаторе отпадает. Реле — РЭС55А с рабочим напряжением 10…12 В.
Аналоги TL431
ИМС tl431 аналог, которой нужно подобрать, относится к управляющим стабилитронам. Поэтому подбирать аналогичную ИС необходимо по электрическим параметрам: опорному напряжению, входному напряжению, рабочему току и конструктивным особенностям.
Осторожно. Аналоги могут быть: полными, ближайшими и функциональными
В зависимости от новой детали, возможны дополнения и изменения к электронной схеме, куда она будет устанавливаться (замещаться). При подборе аналога следует учесть, что первые две буквы перед цифрами – это название производителя.
К примеру, транзистор az431 характеристики которого при проверке совпадают с tl431, это он же и есть, просто производитель другой.
Некоторые аналоги для TL431
Области применения TL431
Выше изложенные варианты применения TL431 могут быть использована в любом месте, где требуется точность настройки выходного напряжения или опорного напряжении. В настоящее время это широко используется в импульсных источниках питания для генерации точного опорного напряжения.
(скачено: 846)
Сразу оговорюсь, что данная статья не панацея. У кого-то это может не пройти.
Для начала я расскажу о TL431, и для чего она служит. TL431 это управляемый стабилитрон с помощью которого можно получить стабилизированное напряжения в широких пределах от 2,5 вольта до 36 вольт. Применяя эту микросхему можно сделать источник опорного напряжения для блоков питания, а также для различных измерительных схем.
Рисунок взят из даташита компании ON Semiconductor
Ниже приведены два варианта даташит для этой микросхемы
- Даташит компании ON Semiconductor https://www.onsemi.com/pub/Collateral/TL431-D.PDF
- Даташит компании Texas Instruments https://www.ti.com/lit/ds/symlink/tl431.pdf
Цоколевка этой микросхемы наилучшим образом отображена в даташите компании ON Semiconductor
В даташите Texas Instruments обнаружена одна небольшая деталь
На всех рисунках есть одна надпись «top view» это переводится как «вид сверху» при невнимательном просмотре даташит, не зная, что это может обозначать, можно неправильно распаять на плате.
В одной из своих схем я применил микросхему TL431, и она оказалась неисправной. Поискав по форумам я нашел способ проверки этой микросхемы. А в некоторых местах я видел как вызванивают эту микросхему с помощью мультиметра но, увы, все это не то. Я тоже сначала попытался проверить мультиметром но сразу отложил в сторону это мероприятие. И решил попробовать проверить с помощью универсального тестера компонентов , который был ранее приобретен на алиэкспресс.
Во время проверки составил таблицу. Сначала проверил в режиме двухполюсника (если в таблице указаны два вывода, просто необходимо объединить оба вывода вместе).
Результаты измерения первого экземпляра
анод, катод |
Измерение 1 – REF; 2 — катод.
Измерение 1 – анод; 2 — катод.
Измерение 1 — REF, катод; 2 – анод.
Измерение 1 – REF; 2 – катод, анод.
Измерение 1 – REF, 2 – анод, 3 – катод.
Результаты измерения второго экземпляра.
анод, катод |
Небольшая разница присутствует. Глядя на таблицу замечаешь определенную закономерность. Например, в 4 строке это фактически режим работы TL431 для получения 2,5 вольта. Но самое интересное режим измерения в режиме трехполюсника. В одном случае определяется как транзистор, а во втором случае как отсутствует деталь. Самое интересное в случае когда транзистор определяется: определятся транзистор структуры NPN, вывод REF определятся как эмиттер, анод как база, а катод как коллектор. Между REF и катодом диод катод, которого направлен в сторону катода.
На основании этих данных уже можно судить исправлена микросхема или нет, а также определить цоколевку.
Микросхема TL431
— это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.
Микросхема tl431 схема включения
Соответствующая функциональная схема регулятора приведена на Рис. Внешне она отличается от схемы Рис. Благодаря этому в схеме Рис.
Стабилитроны VD1 и VD2 в этой схеме также подобраны в пару с напряжением около 13,5 вольта, что дает возможность сопоставлять результаты соответствующих экспериментов с предыдущей схемой.
Величина тока генераторов тока ГТ здесь несколько увеличена и составляет 23 мА.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты: Обсуждения, статьи, мануалы:
TL431 схема включения, TL431 цоколевка
Микросхема TL — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания. Микросхема стабилитрон TL может использоваться не только в схемах питания.
При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.
Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL вывод 1 меньше 2,5В, стабилитрон TL заперт, через него проходит только малый ток, обычно, менее 0,4 мА.
Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм. Максимальный ток проходящий через стабилитрон TL находится в районе мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3.
Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный. Иногда необходимо проверять несколько значений напряжения.
В таком случае понадобятся несколько подобных сигнализатора на TL настроенных на свое напряжение. Разница данной схемы от предшествующей в том, что светодиод подключен по иному.
Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL открывается, и ток течет через сопротивление R3 и выводы микросхемы TL Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.
В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом.
Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога 0,05…0,1В. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности.
До тех пор пока освещение велико, сопротивление фототранзистора мало. Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит.
Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга.
После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL, светодиод загорается. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1. Помимо приведенных световых устройств, на микросхеме TL можно смастерить и звуковой индикатор.
Схема подобного устройства приведена ниже. Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости.
Большое спасибо! Ценная и грамотно изложенная информация. Вообще сайт беру в закладки: посещаю не первый раз и всегда получаю необходимую мне информацию. Весьма благодарен за столь такую ценную информацию и её грамотное описание. Главное в простоте и доступности большой аудитории радиолюбителей. Объясните, пожаулйста, назначение резистора R2 например, на первых двух схемах?
Схемы включения TL431
Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.
Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.
Стабилизатор тока на TL431
Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.
Индикатор повышения напряжения
Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.
В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле: