Arduino: выбор платы, подключение и первая программа

цифровая электроника вычислительная техника встраиваемые системы

Диммер своими руками на основе Arduino и триака

В домах большинство приборов питаются от источника переменного тока, например, светильники, телевизоры, вентиляторы и т. д. Мы можем включать / выключать их в цифровом виде, если это необходимо, используя Arduino и реле, создав систему домашней автоматизации. Но что, если нам нужно контролировать мощность этих устройств, например, чтобы уменьшить яркость лампы переменного тока или контролировать скорость вентилятора. В этом случае мы должны использовать технику контроля фазы и статические переключатели, такие как триак или тиристор, для контроля фазы напряжения питания переменного тока.

Итак, в этом примере мы рассмотрим, как сделать диммер лампы переменного тока, используя Arduino и триак. Здесь триак используется для коммутации лампы переменного тока, так как это силовое электронное устройство быстрого переключения, которое лучше всего подходит для этих применений.

Чтобы управлять напряжением переменного тока, первое, что мы должны сделать, это обнаружить пересечение нуля сигнала переменного тока. Частота сигнала переменного тока составляет 50 Гц и как бы чередуется синусоидальным образом. Следовательно, каждый раз, когда сигнал поступает в нулевую точку, мы должны обнаружить эту точку и после этого запустить триак в соответствии с требованиями по мощности. Нулевая точка пересечения сигнала переменного тока показана ниже.

Здесь в качестве триака мы будем использовать BT136.

Он представляет собой трехвыводной переключатель переменного тока, который может запускаться сигналом низкой энергии на его выводе затвора.

Как показано на рисунке выше, триак включается при угле 90 градусов при подаче на него небольшого сигнала импульса затвора. Время «t1» – это время задержки, которое мы должны дать согласно нашему требованию по уменьшению яркости. Например, в этом случае, поскольку угол составляет 90 градусов, следовательно, выходная мощность также будет уменьшена вдвое, и, следовательно, лампа также будет светиться с половиной интенсивности.

Мы знаем, что частота переменного сигнала здесь составляет 50 Гц. Таким образом, период времени будет 1/f, который будет 20 мс., поэтому для полупериода это будет 10 мс или 10000 микросекунд. Следовательно, для управления мощностью нашей лампы переменного тока диапазон «t1» может варьироваться от 0 до 10000 микросекунд.

Для управления триаком с целью развязки информационной части от силовой части следует использовать изолятор, например, оптопару.

Оптопара или оптрон используется для поддержания изоляции между двумя электрическими цепями, такими как сигналы постоянного и переменного тока. По сути, он состоит из светодиода, излучающего инфракрасный свет, и фотодатчика, который его обнаруживает. Здесь мы используем оптопару MOC3021 для управления лампой переменного тока от сигналов микроконтроллера. Принципиальная схема диммера переменного тока приведена далее.

На следующем рисунке представлена схема подключения триака и оптопары.

На макетной плате это будет выглядеть следующим образом.

Мы также припаяли оптопару MCT2E на отдельной плате для подключения ее к трансформатору для питания от сети переменного тока.

И полная схема диммера на основе Arduino будет выглядеть примерно так.

После успешного завершения сборки аппаратной части, пришло время программировать Arduino. Код программы диммера на Arduino следующий.

Ниже приведены фотографии, показывающие три стадии регулирования яркости лампы переменного тока с использованием Arduino и триака.

Разработка проекта

На современном рынке представлено множество устройств Arduino, имеющих различную комплектацию. Но универсального решения «на все случаи жизни» не существует. В зависимости от поставленной задачи каждый комплект подбирается в индивидуальном порядке. Чтобы избежать ошибок, требуется разработка проекта.

Какие проекты можно создавать на Arduino?

Ардуино позволяет создавать множество уникальных проектов. Вот лишь некоторые из них:

  • Сборка кубика Рубика (система справляется за 0,887 с);
  • Контроль влажности в подвальном помещении;
  • Создание уникальных картин;
  • Отправка сообщений;
  • Балансирующий робот на двух колесах;
  • Анализатор спектра звука;
  • Лампа оригами с емкостным сенсором;
  • Рука-робот, управляемая с помощью Ардуино;
  • Написание букв в воздухе;
  • Управление фотовспышкой и многое другое.

Составление проекта для умного дома

Рассмотрим ситуацию, когда необходимо сделать автоматику для дома с одной комнатой.

Такое здание состоит из пяти основных зон — прихожей, крыльца, кухни, санузла, а также комнаты для проживания.

При составлении проекта стоит учесть следующее:

  • КРЫЛЬЦО. Включение света производится в двух случая — приближение хозяина к дому в темное время суток и открытие дверей (когда человек выходит из здания).
  • САНУЗЕЛ. В бойлере предусмотрен выключатель питания, который при достижении определенной температуры выключается. Управление бойлером производится в зависимости от наличия соответствующей автоматики. При входе в помещение должна срабатывать вытяжка, и загорается свет.
  • ПРИХОЖАЯ. Здесь требуется включение света при наступлении темноты (автоматическое), а также система обнаружения движения. Ночью включается лампочка небольшой мощности, что исключает дискомфорт для других жильцов дома.
  • КОМНАТА. Включение света производится вручную, но при необходимости и наличии датчика движения эта манипуляция может происходить автоматически.
  • КУХНЯ. Включение и отключение света на кухне осуществляется в ручном режиме. Допускается автоматическое отключение в случае продолжительного отсутствия перемещений по комнате. Если человек начинает готовить пищу, активируется вытяжка.

Отопительные устройства выполняют задачу поддержания необходимой температуры в помещении. Если в доме отсутствуют люди, нижний предел температуры падает до определенного уровня.

После появления людей в здании этот параметр поднимается до прежнего значения. Рекуперация воздуха осуществляется в случае, когда система обнаружила присутствие владельца. Продолжительность процесса — не более 10 минут в час.

Стоит обратить внимание, что если в доме планируется установка умных розеток, то для управления ими лучше использовать приложения на мобильных устройствах, WIFI или через SMS сообщения. Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/

Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте. Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:

Важно заметить, что обязательную в С++ функцию процессор Arduino создаёт сам. И результатом того, что видит программист есть:. Давайте разберёмся с двумя обязательными функциями

Функция вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция — циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера

Давайте разберёмся с двумя обязательными функциями. Функция вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция — циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

Из чего состоит

На аппаратном уровне это серия смонтированных плат, мозгом которых являются микроконтроллеры семейства AVR. Платы имеют на борту всё необходимое для комфортной работы, но их функциональности часто бывает недостаточно. Чтобы сделать свой проект более интерактивным, можно использовать различные модули и платы расширений, совместимые с платформой Arduino. Сюда входят датчики (температуры, освещения, влаги, газа/дыма, атмосферного давления), устройства ввода (клавиатуры, джойстики, сенсорные панели) и вывода (сегментные индикаторы, LCD/TFT дисплеи, светодиодные матрицы).

Как обозначаются конденсаторы на схеме.
Читать далее

Как отличается параллельное и последовательное соединение резисторов.
Читать далее

Масляные трансформаторы – что это такое, устройство и принцип работы.
Читать далее

На программном уровне платформа Arduino представляет собой бесплатную среду разработки Arduino IDE. Микроконтроллеры надо программировать на языке C++, с некоторыми отличиями и облегчениями, созданными для быстрой адаптации начинающих. Компиляцию программного кода и прошивку микроконтроллера среда разработки берёт на себя. Существует также — сервис, базирующийся на Scratch, позволяющий более наглядно вести разработку на Arduino. Он подойдёт для обучения детей, а также если вы разово хотите создать простое устройство без изучения языка программирования Arduino и различных документаций. Для остальных же случаев лучше придерживаться традиционного процесса разработки.

Интересные проекты на базе МК Arduino

На Ардуино уже создано тысячи проектов, а многие инженеры ведут собственные блоги или каналы на YouTube, где вы можете ознакомиться с их творчеством. Из интересных идей, стоит отметить следующие:

  1. Умный дом. Практически каждый элемент умного дома можно создать собственными руками. От автоматических штор и дверей до сигнализаций и регулируемого освещения.
  2. Кодовые замки. Проект простой, и подойдёт для новичков. Достаточно использовать любой датчик и сделать замки, реагирующие на определённый ритм постукиваний или же на приближение вашего смартфона.
  3. Автоматизированные теплицы.

Проектов на деле в тысячи раз больше, вам остаётся лишь подключить свою фантазию, а инструментарием послужит Ардуино.

Особенности проектов

Большинство электронщиков предпочитают создавать свои проекты на основе микроконтроллера Аrduino Uno, о которой и мы писали уже несколько раз.

Для начала стоит познакомиться с функционалом микропроцессора Ардуино уно, на котором строится большинство проектов, а также рассмотреть причины выбора данного приспособления. Ниже описаны факторы, по которым начинающему изобретателю стоит остановиться на Аrduino uno:

  1. Довольно простой в использовании интерфейс. Понятно, где какой контакт, и к чему прикреплять соединительные провода.
  2. Чип на плате подключается прямо к USB-порту. Преимущество этой установки заключается в том, что последовательная связь – это очень простой протокол, который проверен временем, а USB делает соединение с современными компьютерами очень удобным.
  3. Легко найти центральную часть микроконтроллера, которая представляет собой чип ATmega328. Он имеет больше аппаратных функций, таких как таймеры, внешние и внутренние прерывания, пины PWM и несколько режимов ожидания.
  4. Устройство с открытым исходным кодом, поэтому большое количество радиолюбителей могут исправить баги и неполадки в программном обеспечении. Это облегчает отладку проектов.
  5. Тактовая частота равна 16 МГц, что достаточно быстро для большинства приложений и не ускоряет работу микроконтроллера.
  6. Очень удобно управлять мощностью внутри него, и она имеет функцию встроенного регулирования напряжения. Также микроконтроллер можно отключить от USB-порта без внешнего источника питания. Можно подключить внешний источник питания до 12 В. Причем микропроцессор сам определит нужное напряжение.
  7. Наличие 13 цифровых контактов и 6 аналоговых контактов. Эти пины позволяют подключать оборудование к плате Arduino uno со стороннего носителя. Контакты используются в качестве ключа для расширения вычислительной способности Arduino uno в реальном мире. Просто подключите свои электронные устройства и датчики к разъемам, которые соответствуют каждому из этих контактов.
  8. Имеется в наличии разъем ICSP для обхода USB-порта и сопряжения с Arduino напрямую в качестве последовательного устройства. Этот порт необходим, чтобы перезагрузить чип, если он поврежден и больше не может использоваться на вашем компьютере.
  9. Наличие 32 КБ флэш-памяти для хранения кода разработчика.
  10. Светодиод на плате подключается к цифровому контакту 13 для быстрой отладки кода и упрощения этого процесса.
  11. Наконец, у него есть кнопка для сброса программы на чипе.

Arduino был создан в 2005 году двумя итальянскими инженерами – Дэвидом Куартиллесом и Массимо Банзи с целью, чтобы ученики научились программировать микроконтроллер Arduino uno и улучшить свои навыки в области электроники и использовать их в реальном мире.

Arduino uno может воспринимать окружающую среду, получая вход от различных датчиков, и способен влиять на окружающую среду, контролируя свет, двигатели и другие исполнительные механизмы. Микроконтроллер запрограммирован с использованием языка программирования Arduino (на основе проводки) и среды разработки Arduino (на основе обработки).

Что такое Arduino?

Ардуино (Arduino) — специальный инструмент, позволяющий проектировать электронные устройства, имеющие более тесное взаимодействие с физической средой в сравнении с теми же ПК, фактически не выходящими за пределы виртуальной реальности.

В основе платформы лежит открытый код, а само устройство построено на печатной плате с «вшитым» в ней программным обеспечением.

Другими словами, Ардуино — небольшое устройство, обеспечивающее управление различными датчиками, системами освещения, принятия и передачи данных.

В состав Arduino входит микроконтроллер, представляющий собой собранный на одной схеме микропроцессор. Его особенность — способность выполнять простые задачи. В зависимости от модели устройство Ардуино может комплектоваться микроконтроллерами различных типов.

Существует несколько моделей плат, самые распространённые из них – UNO, Mega 2560 R3.

Не менее важная особенность печатной платы заключается в наличии 22 выводов, которые расположены по периметру изделия. Они бывают аналоговыми и цифровыми.

Особенность последних заключается в управлении с помощью только двух параметров — логической единицы или нуля. Что касается аналогового вывода, между 1 и 0 имеется много мелких участков.

Сегодня Arduino используется при создании электронных систем, способных принимать информацию с различных датчиков (цифровых и аналоговых).

Устройства на Ардуино могут работать в комплексе с ПО на компьютере или самостоятельно.

Что касается плат, их можно собрать своими руками или же приобрести готовое изделие. Программирование Arduino производится на языке Wiring.

ЧИТАЙТЕ ПО ТЕМЕ: Умный дом Xiaomi Smart Home, обзор, комплектация, подключение и настройка своими руками, сценарии.

Дистанционное управление «умным» домом

Для подключения платы к интернету, понадобится:

  • Wi-Fi-адаптер, настроенный на прием и передачу сигнала через маршрутизатор;
  • или подключенный через Ethernet кабель Wi-Fi роутер.

Также, есть вариант дистанционного управления по блютуз. Соответственно, к плате должен быть подключен Bluetooth модуль.

Есть несколько вариантов управления умным домом Arduino: с помощью приложения для смартфона или через веб.

Так как данная система-конструктор – не закрытая экосистема, то и приложений, реализованных для нее очень много. Они отличаются друг от друга не только интерфейсом, но и выполнением различных задач.

Управлять удаленно платой умного дома можно, разместив получение и обработку данных умного дома на веб-сервере. Естественно, сервер для умного дома Ардуино нужно создавать самостоятельно.

Для этих целей понадобится Arduino Ethernet Shield – сетевое расширение для пинов Ардуино Уно, позволяющее добавить разъем RJ-45 для подключения к сети.

При удаленном подключении, необходимо обеспечить внешнее питание платы не от USB.

Затем, подключите по USB плату к компьютеру, а по Ethernet плату к роутеру, которой раздает интернет компьютеру. При правильном установлении соединения, вы увидите зеленый свечение на порту.

После этого, нужно использовать библиотеки шилдов Ethernet и в среде разработки IDE написать код для создания сервера и отправки данных на сервер. Пример самодельного сервера неплохо описан в данной инструкции.

С помощью подключаемой библиотеки GSM в Arduino IDE можно:

  1. Работать с голосовыми вызовами.
  2. Получать и отправлять СМС.
  3. Подключаться к Интернету через GPRS.

Работает схема через специальную плату расширения GSM, содержащую специальный модем.

О создании универсальной сигнализации на Arduino, с отправкой СМС уведомления на смартфон можно узнать из соответствующей видеоинструкции.

  • https://ElektrikExpert.ru/arduino.html
  • https://ArduinoMaster.ru/projects/proekty-arduino-dlya-nachinayushhih/
  • https://ArduinoPlus.ru/arduino-uno-proekti/
  • https://ArduinoPlus.ru/arduino-nano-projects/
  • https://future2day.ru/umnyj-dom-na-osnove-arduino/

Предыдущая
ArduinoЧто такое ide arduino: характеристики и применение на практике

История Ардуино

Основателями компании, которая начала создавать платы Ардуино, являются итальянцы Массимо Банци, Девида Куартиллье, Тома Иго, Джанлука Мартино и Девида Меллиса. Такой была первоначальная команда создателей.

А название они позаимствовали у итальянского бара, который, в свою очередь, был назван в честь короля Италии.


Фрагмент портрета Ардуина из Ивреи. Замок Мазино. Картина пьемонтской школы около 1700 года.

Ардуин был итальянским дворянином, который был королем Италии с 1002 по 1014 год. В 990 году Ардуин стал маркграфом Ивреи, а в 991 году графом Священного дворца Латеранского в Риме.

Стоит также сказать, что для Соединенных Штатов Америки используется другое название — Genuino.

Преимущества платформы Arduino

  • Финансовое: платформа Arduino является экономичным решением, поскольку она дешевле. Кроме того, она архитектурно открыта, и каждый может производить ее самостоятельно.
  • Совместимость: по сравнению с существующими подобными платформами, платформа Arduino обеспечивает полную мобильность и может быть запрограммирована в большинстве операционных систем.
  • Расширяемость: аппаратное и программное обеспечение платформы Arduino является открытым и бесплатным для всех. Регулярно тысячи разработчиков программного обеспечения разрабатывают библиотеки для поддержки платформы. В то же время, как архитектура, так и аппаратное обеспечение платформы постоянно развиваются.

Формы оборудования с открытым исходным кодом

Термин « аппаратное обеспечение» в оборудовании с открытым исходным кодом исторически использовался в противоположность термину « программное обеспечение» для программного обеспечения с открытым исходным кодом. То есть для обозначения электронного оборудования, на котором работает программное обеспечение (см. Предыдущий раздел). Однако, поскольку все больше и больше неэлектронных аппаратных продуктов делается с открытым исходным кодом (например, Wikihouse, OpenBeam или Hovalin), этот термин, как правило, снова используется в более широком смысле слова «физический продукт». Было показано, что область аппаратного обеспечения с открытым исходным кодом выходит за рамки электронного оборудования и охватывает более широкий спектр категорий продуктов, таких как станки, транспортные средства и медицинское оборудование. В этом смысле аппаратные средства относятся к любой форме материального продукта, будь то электронное оборудование, механическое оборудование, текстиль или даже строительное оборудование. Определение 1.0 оборудования с открытым исходным кодом (OSHW) определяет оборудование как «материальные артефакты — машины, устройства или другие физические объекты».

Компьютеры

Несколько групп любителей ретрокомпьютеров создали многочисленные воссоздания или адаптации первых домашних компьютеров 1970-х и 80-х годов, некоторые из которых включают улучшенную функциональность и более современные компоненты (такие как ИС для поверхностного монтажа и устройства чтения SD-карт ). Некоторые любители также разработали дополнительные карты (например, контроллеры дисков, расширения памяти и звуковые карты) для улучшения функциональности старых компьютеров. Также были созданы миниатюрные копии старинных компьютеров.

Электроника

Электроника — один из самых популярных типов оборудования с открытым исходным кодом. Есть много компаний, которые предоставляют большой выбор электроники с открытым исходным кодом, например Sparkfun , Adafruit и Seeed. Кроме того, есть НКО и компании, которые предоставляют определенные электронные компоненты с открытым исходным кодом, такие как платформа для создания прототипов электроники Arduino . Существует множество примеров специальной электроники с открытым исходным кодом, такой как недорогой монитор для трехмерного принтера с открытым исходным кодом GMAW с открытым исходным кодом и платформа для масс-спектрометрического анализа с использованием робототехники . Электроника с открытым исходным кодом находит различные применения, включая автоматизацию химических процессов.

Механические (тро) ники

Был разработан широкий спектр мехатронных продуктов с открытым исходным кодом, включая механические компоненты, станки, транспортные средства, музыкальные инструменты и медицинское оборудование. Примеры станков с открытым исходным кодом включают 3D-принтеры, такие как RepRap , Prusa и Ultimaker,

Интерфейсы подключения

У микроконтроллерной платформы Arduino существует два типа интерфейсов входов/выходов(I/O ports) — аналоговые и цифровые порты, так же называемые пинами. Эти пины настраиваются как входы или как выходы, чтобы, соответственно, считывать информацию в виде электрического напряжения или передавать её в виде напряжения на определенный источник.

Цифровые порты

Цифровые порты 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 позволяют подключить к Arduino различные датчики, сенсоры и прочие микросхемы. Цифровой порт имеет всего два значения для приёма/передачи: HIGH(высокий) и LOW(низкий). Они же соответственно 5V и 0V.

Аналоговые порты

Arduino Uno имеет на своей плате шесть аналоговых портов A0, A1, A2, A3, A4, A5. Аналоговые порты нужны для того, чтобы регулировать напряжение на порте от 0 до 5V. Диапазон их значений, доступных для приёма и передачи лежит в отрезке от 0 до 1023, где 0 соответствует 0V, а 1023 — 5V.

Пример перевода аналогового сигнала в вольты:

 float Step = 5.0F  1024; // Вычисляем шаг Uопорн / на градацию 
  
 void setup() 
 { 
 Serial.begin(9600); // Задаем скорость работы монитор порта 
 } 
 
 void loop() 
 { 
 int analogValue = analogRead(); // Задаем переменную analogValue для считывания показаний 
 float voltageValue = analogValue * Step; // Переводим в вольты (показание * шаг) 
 Serial.println(voltageValue); // Выводим значение в вольтах в порт 
 delay(500); // Ждем пол секунды//

Платы Arduino

Многие устройства для начинающих на основе Arduino не требуют серьезных знаний в технике или программировании.

Arduino называют аппаратно-программной платформой. Она изначально создана компанией Arduino Software и представляет собой плату с контактами для подключения дополнительных компонентов.

Одна из плат, Arduino Uno, в руке выглядит вот так:

Плата Arduino Uno в руке

Для сравнения — вот такой размер другой платы Ардуино, которая называется Nano:

Плата Arduino Nano в руке

Ниже на фото я привел пример того как выглядит простое собранное устройство на основе платы Уно:

На фото сразу можно заметить главное достоинство платы — нам не нужно было ничего припаивать и мы использовали минимум комплектующих. Таким же образом можно собрать множество интереснейших устройств.

Технические характеристики зависят от модели используемого микроконтроллера, а с внешним видом двух самых популярных моделей вы уже познакомились — это Arduino Uno и Nano.

Начало работы

Как только необходимое оборудование подготовлено, а проект разработан, можно приступать к выполнению поставленной задачи.

Этапы

При организации системы «Умный дом» на базе Ардуино, стоит действовать по следующему алгоритму:

  • Инсталляция программного кода;
  • Конфигурация приложения под применяемое устройство;
  • Переадресация портов (для роутера);
  • Проведение тестов;
  • Внесение правок и так далее.

В Сети имеется весь необходимый софт на применяемое оборудование — его достаточно скачать с официального сайта и установить (ссылку смотрите выше).

Приложение позволяет увидеть информацию о датчиках. Если это требуется, настройки IP-адрес могут быть изменены.

Последовательность действий при подключении к компьютеру

Чтобы начать работать с Ардуино в Windows, сделайте следующие шаги:

  • Подготовьте необходимое оборудование — USB-кабель и Arduino.
  • Скачайте программу на странице arduino.cc/en/Main/Software.
  • Подсоедините плату с помощью USB-кабеля. Проследите, чтобы загорелся светодиод PWR.
  • Поставьте необходимый набор драйверов для работы с Ардуино. На этом этапе стоит запустить установку драйвера и дождаться завершения процесса. После жмите на кнопку «Пуск» и перейдите в панель управления. Там откройте вкладку «Система и безопасность» и выберите раздел «Система». После открытия окна выберите «Диспетчер устройств», жмите на название Ардуино и с помощью правой кнопки мышки задайте команду обновления драйвера. Найдите строчку «Browse my computer for Driver software!», кликните по ней и выберите соответствующий драйвер для вашего типа платы — ArduinoUNO.inf (находится в папке с драйверами). Это может быть UNO, Mega 2560 или другая.
  • Запустите среду разработки Ардуино, для чего дважды кликните на значок с приложением.
  • Откройте готовый пример (File — Examples — 1.Basics — Blink).
  • Выберите плату. Для этого перейдите в секцию Tools, а дальше в Board Menu.
  • Установите последовательный порт (его можно найти путем отключения и подключения кабеля).
  • Скачайте скетч в Ардуино. Кликните на «Upload» и дождитесь мигания светодиодов TX и RX на плате. В завершение система показывает, что загрузка прошла успешно. Через несколько секунд после завершения работы должен загореться светодиод 13 L (он будет мигать оранжевым). Если это так, система готова к выполнению задач.

Работа с роутером

Для полноценной работы «Умного дома» важно правильно обращаться с роутером. Здесь требуется выполнить следующие действия — открыть конфигурацию, указать адрес Arduino IP, к примеру, 192.168.10.101 и открыть 80-й порт

После требуется присвоить адресу доменное имя и перейти к процессу тестирования проекта. Учтите, что для такой системы запрещено применение открытого IP-адреса, ведь в этом случае высок риск взлома через Сеть.

Умный дом на базе Raspberry Pi 3 своими руками, пошаговая инструкция

Дополнительные устройства для Arduino

Безусловно, Arduino сама по себе уже прекрасна. Но как отдельный узел она на многое не способна. Что-то надо к ней подключать. На просторах интернета огромное количество туториалов и проектов, из которых вы можете черпать идеи для своих проектов. В этой части мы сделаем небольшой обзор датчиков и шилдов (плат расширений) для Arduino.

Датчики (сенсоры)

С помощью коротенького кода и Arduino вы можете управлять широчайшим спектром датчиков — сенсоров, которые позволяют измерять уровень освещенности, температуру, давление, расстояние, силу, влажность, радиоактивность, ускорение и многое другое. На рисунке ниже приведены несколько из огромного количества датчиков, совместимых с Arduino:

Шилды (Shields) для Arduino

Помимо всего прочего, есть такая замечательная вещь как шилды — по сути это отдельная электросхема, которая имеет коннекторы и садится на вашу плату Arduino и обеспечивает упрощенное управление двигателями (Motor шилд), подключение к интернету (Ethernet шилд), радиосвязь, управление жидкокристаллическими и сенсорными экранами и т.д.

Некоторые из шилдов показаны на рисунке ниже:

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Знакомство с интерфейсом Ардуино

Одним из основных элементов ардуино является главное меню программы, которое позволяет получить доступ ко всем доступным функциям нашей программы.

Ниже расположена панель с иконками, которые отображают наиболее используемые функции Arduino IDE:

  • загрузка программы;
  • проверка на наличие ошибок;
  • создание нового скетча;
  • сохранение скетча;
  • загрузка сохранения;
  • открытие окна порта микроконтроллера;

Следующим по важности элементом является вкладка с файлами проекта. Если это простой скетч, то файл будет всего один

Однако сложные скетчи могут состоять из нескольких файлов. В таком случае на панели вкладок можно быстро переключить просмотр с одного файла на другой. Это очень удобно.

Самым большим из блоков является поле редактора наших скетчей. Тут мы можем просмотреть и, при необходимости, отредактировать нужный нам программный код. Отдельно реализовано поле для вывода системных сообщений. С его помощью можно убедиться, что сохранение вашего скетча или его загрузка были проведены успешно, и вы можете приступать к следующим действиям. Также в программе существует окно, отображающее наличие в ходе компиляции вашего скетча.

Компиляция – преобразование исходного кода языка высокого уровня в машинный код или на язык ассемблера.

Среда разработки Arduino

Очень большой частью платформы Ардуино является Интегрированная Среда Разработки или IDE (Integrated development environment).

Для работы платы и вашего будущего проекта необходимо написать и загрузить на Arduino скетч. IDE помогает с легкостью всё это реализовать.

Скетч — это программа, написанная для управления платой Ардуино и устройствами на ее основе, которая загружается в микроконтроллер. Имеет также другое название — эскиз.

Простыми словами — это программа в которой создатели своих устройств пишут код для управления своими будущими роботами, гаджетами, умным домом и т.п..

Arduino IDE является бесплатной, скачивается и устанавливается на компьютер пользователя.

Программа работает на операционных системах Windows, Mac OS и Linux.


Окно загрузки и экран программы Arduino IDE

Подробнее познакомиться со средой разработки вы можете в нашей статье «Arduino IDE: программная среда для разработки под Ардуино».

Скачать Arduino IDE можно с официального сайта производителя плат Arduino.

Главное ядро программы версии 1.8.0 было выпущено 20 декабря 2016 года, а уже в 2021 году многие используют версию 1.8.13.

Вместе с программой автоматически установятся драйвера для определения платы при подключении к USB-порту. Среда разработки оснащена стандартным менеджером добавления библиотек в виде исходного кода на языке C++.

Данная возможность расширяет применение компонентов, добавляя новый функционал.

История Ардуино

Основателями компании, которая начала создавать платы Ардуино, являются итальянцы Массимо Банци, Девида Куартиллье, Тома Иго, Джанлука Мартино и Девида Меллиса. Такой была первоначальная команда создателей.

А название они позаимствовали у итальянского бара, который, в свою очередь, был назван в честь короля Италии.

Фрагмент портрета Ардуина из Ивреи. Замок Мазино. Картина пьемонтской школы около 1700 года.

Ардуин был итальянским дворянином, который был королем Италии с 1002 по 1014 год. В 990 году Ардуин стал маркграфом Ивреи, а в 991 году графом Священного дворца Латеранского в Риме.

Стоит также сказать, что для Соединенных Штатов Америки используется другое название — Genuino.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: