Как работают фотоэлементы солнечной батареи
Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.
Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».
В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.
Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.
Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток
Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.
Рекомендуется, солнечные батареи устанавливать на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Где и как применяют солнечную энергию?
Гибкие панели применяются в разных сферах. Прежде чем составлять проект энергообеспечения дома при помощи этих солнечных батарей, выясните, где они применяются и каковы особенности их использования в нашем климате.
Область применения солнечных батарей
Применение гибких солнечных батарей очень широкое. Они с успехом используются в электронике, электрификации зданий, автомобиле- и авиастроении, на космических объектах.
В строительстве такие панели используют для обеспечения жилых и промышленных зданий электричеством.
Солнечная энергия может быть единственным источником электричества, а может дублировать традиционную схему электроснабжения, чтобы на случай недостаточной эффективности в определенный период дом не остался обесточенным
Портативные зарядные устройства на основе гибких солнечных элементов доступны каждому и продаются повсеместно. Большие гибкие туристические панели для добычи электроэнергии в любом уголке Земного шара очень популярны среди путешественников.
Очень необычная, но практичная идея – использовать в качестве основы для гибких батарей дорожное полотно. Специальные элементы защищены от ударов и не боятся больших нагрузок.
Гибкие батареи хороши еще тем, что могут быть применены практически в любых ситуациях. Их можно без труда разместить на крыше автомобиля или корпусе яхты
Эта идея уже реализована. «Солнечная» дорога обеспечивает энергией окрестные деревни, при этом не занимая ни одного лишнего метра земли.
Особенности применения гибких аморфных панелей
Те, кто планирует начинать использование гибких солнечных панелей в качестве источника электроэнергии для своего дома, должны знать особенности их эксплуатации.
Солнечные панели с гибкой металлической основой находят применение там, где к износостойкости мини-электростанций предъявляются повышенные требования:
Прежде всего пользователей волнует вопрос, а что делать зимой, когда световой день короткий и электричества не хватит на функционирование всех приборов?
Да, в условиях пасмурной погоды и короткого светового дня производительность панелей снижается. Хорошо, когда есть альтернатива в виде возможности переключения на централизованное электроснабжение. Если ее нет, нужно запасаться аккумуляторами и заряжать их в те дни, когда погода благоприятная.
Интересная особенность солнечных батарей заключается в том, что при нагревании фотоэлемента его эффективность существенно снижается.
В летний зной панели раскаляются, но работают хуже. Зимой, в солнечный день фотоэлементы способны улавливать большее количество света и преобразовывать его в энергию
Число ясных дней в году зависит от региона. Разумеется, на юге использовать гибкие батареи рациональнее, поскольку солнце там светит дольше и чаще.
Так как в течение дня Земля меняет свое положение относительно Солнца, панели лучше располагать универсально – то есть с южной стороны под углом около 35-40 градусов. Такое положение будет актуальным как в утренние и вечерние часы, так и в полдень.
Шаг 2: Выбор аккумуляторов
Все солнечные панели являются источниками постоянного тока. Электроэнергию они генерируют только днем. Если есть желание подключить нагрузку постоянного тока днем, то с этим нет никаких проблем, можно подключиться непосредственно от панелей. Но сделать это – не самое хорошее решение, потому что:
- Большинству приборов необходимо постоянное номинальное напряжение для эффективной работы. Передаваемое солнечными панелями напряжение и ток непостоянны. Они меняются в зависимости от интенсивности солнечного света, пасмурная погода – «не есть хорошо».
- Если вы хотите включить что-то ночью, то это что-то попросту не включится.
Указанная проблема решается использованием аккумуляторов, для накопления энергии в дневное время, и использования её в ночное. Существует много видов аккумуляторов. Аккумуляторы «открытого типа» с жидким электролитом, к которым относятся автомобильные аккумуляторы — предназначены для выдачи высокого тока в течение небольшого промежутка времени. Они не предназначены для глубокого разряда, у них задачи другие. Аккумуляторы для солнечных батарей являются аккумуляторами глубокого цикла, они легко переносят частичные разряды и предназначены для глубокого медленного разряда. Для солнечных электростанций хорошо подходят гелевые и литиевые аккумуляторные батареи (о том какие аккумуляторы лучше для солнечных электростанций мы писали тут).
Примечание: Перед тем как выбирать компоненты, определите, какую систему по напряжению вы хотите иметь: 12/24 или 48В. Чем выше напряжение, тем меньший ток будет в медных проводниках и тем меньше будут потери. Кроме того, чем выше рабочее напряжение, тем меньше потребуется сечение проводников. Чаще всего в качестве домашней электростанции используют системы с рабочим напряжением 12В или 24В. Это связано с тем, что часть домашних приборов можно питать напрямую от вашей электростанции, без двойного преобразования напряжения (вверх-вниз), которое приводит к потере мощности. В этом проекте рассмотрим систему 12В.
Параметры аккумулятора:
- Емкость аккумулятора рассчитывается в ампер-часах (Aч).
- Мощность (Вт)= Напряжение (В) х Ток (А). • Вт*час = Напряжение (В) х Ток (А) х Время (ч) = Вт*ч.
- Напряжение батареи = 12В (для нашей системы).
Емкость аккумулятора (Ач) = Мощность нагрузки (Вт)*Время работы (ч)/напряжение(В) = 250/12 = 20,83Ач.
Нужно понимать, что КПД аккумуляторов не может быть 100%, чаще всего КПД равен 80%. Учитывая это, имеем емкость аккумулятора (Ач) = 20,83/0,8 = 26Ач. Поскольку мы используем преобразователь напряжения, который имеет свой КПД, обычно его также принимают равным 80%, добавим его: 26/0,8 = 32,5Ач. Но и это еще не все — даже не смотря на использование аккумуляторов глубокого цикла, для продолжительного срока службы, их не рекомендуется разряжать до полной разрядки, и по-хорошему нужно оставлять хотя бы 30% заряда — чем больше оставим, тем дольше он прослужит, получается: 32,5*1,3 = 42,25Ач Округляем вверх, для того что бы получить целое число и выбираем аккумуляторы глубокого разряда емкостью от 45 ампер-часов (Ач).
Виды контроллеров для солнечной батареи
В современном мире выделяют три типа контроллеров:
– On-Off;
– ШИМ;
– MPPT-контроллер;
On-Off – это простейшее решение для заряда, такой контроллер напрямую подключает солнечные батареи к аккумулятору, когда его напряжение достигнет 14,5 вольта. Однако такое напряжение не свидетельствует о полном заряде аккумулятора. Для этого нужно какое-то время поддерживать ток, чтобы АКБ набрала необходимую для полного заряда энергию. В результате вы получаете хронический недозаряд аккумуляторов и сокращение их срока службы.
ШИМ-контроллеры поддерживают нужное напряжение для зарядки аккумулятора просто «срезая» лишнее. Таким образом, зарядка прибора происходит вне зависимости от напряжения, выдаваемого солнечной батареей. Главное условие, чтобы оно было выше, чем необходимое для заряда. Для аккумуляторов на 12 В, напряжение в полностью заряженном состоянии находится на уровне 14.5 В, а в разряженном около 11. Этот тип контроллеров является более простым, чем MPPT, однако, обладает меньшим КПД. Они позволяют наполнить АКБ на 100% от емкости, что дает значительное преимущество перед системами типа «On-Off».
MPPT-контроллер – имеет более сложное устройство, способное анализировать режим работы солнечной батареи. Его название в полном виде звучит, как «Maximum power point tracking», что на русском языке значит – «Отслеживание точки максимальной мощности». Мощность, которую выдает панель, очень зависит от количества света, который на нее падает.
Дело в том, что ШИМ-контроллер никак не анализирует состояние панелей, а лишь формирует необходимые напряжения для зарядки АКБ. MPPT отслеживает его, а также токи, выдаваемые солнечной панелью, и формирует выходные параметры оптимальные для заряда накопительных элементов питания. Таким образом, снижается ток во входной цепи: от солнечной панели до контроллера, и рациональнее используется энергия.
Недостатки солнечных батарей
К сожалению, и этот практически неисчерпаемый источник энергии имеет определенные ограничения и недостатки:
- Высокая стоимость оборудования – автономная солнечная электростанция даже небольшой мощности доступна далеко не каждому. Оборудование частного дома такими аккумуляторами стоит недешево, но помогает снизить расходы на оплату коммунальных услуг (электроэнергии).
- Обустройство собственного жилища солнечными батареями потребует финансовых затрат.
- Периодичность генерации — солнечная электростанция не способна обеспечить полноценную бесперебойную электрификацию частного дома.
- Хранения энергии – в солнечной электростанции аккумуляторная батарея является самым дорогим элементом (даже батареи небольшого объема и панели на гелевой основе).
- Низкий уровень загрязнения окружающей среды – солнечная энергия считается экологически чистой, однако производственный процесс батарей сопровождается выбросами трифторида азота, оксидов серы. Все это создает «парниковый эффект».
- Использование в производстве редкоземельных элементов – тонкопленочные солнечные панели имеют в своем составе теллурид кадмия (CdTe).
- Плотность мощности – это количество энергии, которое можно получить с 1 кв. метра энергоносителя. В среднем этот показатель составляет 150-170 Вт/м2. Это гораздо больше по сравнению с другими альтернативными источниками энергии. Однако несравнимо, ниже чем у традиционных (это касается атомной энергетики).
Принцип работы солнечной электростанции в домашних условиях
Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.
Видео описание
Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:
Как солнечная энергия используется для получения тепла
Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.
Солнечные коллекторы состоят из:
- бака-аккумулятора;
- насосной станции;
- контроллера;
- трубопроводы;
- фиттингов.
По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.
Принцип действия солнечного коллектораИсточник 21ek.ru
Популярные производители солнечных батарей
Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.
Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:
- ООО «Хевел» в Новочебоксарске;
- «Телеком-СТВ» в Зеленограде;
- «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
- ОАО «Рязанский завод металлокерамических приборов»;
- ЗАО «Термотрон-завод» и другие.
По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.
Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com
Этапы монтажа батарей
- Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
- Устанавливаются панели при помощи специальных крепежных систем.
- Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.
Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.
Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca
Как итог – перспективы развития солнечных технологий
Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.
Оборудование для солнечной электростанции
Эффективность работы солнечных панелей для частного дома определяется не только правильным подбором и расчетом числа модулей. Во многом она зависит от выбора оборудования.
Аккумуляторы
Наилучшие результаты в системах показывают литиевые АКБ, однако стоимость их пока непомерно высока – порядка 4 долларов на 1 Вт мощности. При этом их ресурс составляет 1000-2000 циклов заряд-разряд, что соответствует сроку эксплуатации 3-6 лет. В этом отношении выгоднее кислотно-свинцовые батареи. При том же ресурсе их стоимость почти в 10 раз ниже – около 38 центов на 1 Вт.
Для дома лучше использовать необслуживаемые батареи – AGM или гелевые
При желании получить большую экономию следует обратить внимание на обслуживаемые тяговые аккумуляторы. Их ресурс работы (с учетом замены электролита, восстановления пластин) значительно выше
Однако их придется устанавливать в специальном помещении с соблюдением обязательных условий (например, оборудованном отдельной вентиляционной установкой).
Нужное напряжение батарей получают путем последовательного соединения.
Контроллер панелей
Устройство отвечает за передачу энергии от солнечных панелей на аккумуляторы или на вход ведомого сетью инвертора.
В настоящее время большинство контроллеров используют один из двух принципов регулирования:
- ШИМ (PWM). Использует широтно-импульсную модуляцию, работает при превышении напряжения батарей над АКБ до двукратного.
- MPPT (Maximum Power Point Tracking). Устройство обеспечивает максимальную отдачу мощности, работает с любыми разностями напряжений и обладает повышенным, по отношению к контроллеру ШИМ, КПД. Однако при этом стоит, при прочих равных, в среднем в 4 раза дороже.
Для мощных солнечных станций для большого дома следует отдать предпочтение именно второму варианту.
Инвертор
Специфичен только для сетевых (ведомых сетью) солнечных станций. Для автономных и гибридных используются одни и те же модели, но в различных режимах. Современные технологии позволяют получить высокий КПД и качество выходного напряжения. При этом могут формироваться как однофазная, так и трехфазная система напряжений.
Набор оборудования для солнечной станции
Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.
Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.
Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).
Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:
- Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
- Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
- Обеспечивает максимальный срок службы аккумулятора.
Существует несколько типов контроллеров, используемых в солнечных станциях:
- ON/OFF «включил-выключил»;
- PWM;
- MPPT.
Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.
Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.
И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.
Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).
Структурная схема оборудования солнечной станции
Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.
Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.
Что нужно знать, инвестируя в солнечные батареи
Солнечные батареи рекламируются как инвестиции в дома и в будущее. Однако, есть существенная разница между обычными инвестициями (например, банковские вклады или инвестиционные счета) и покупкой и установкой солнечной фотоэлектрической системы.
Срок службы солнечных батарей – более 30 лет. Окупаемость считается обычно на срок 5-10 лет. После этого срока вы будете получать от солнечных батарей практически бесплатную энергию. Замены потребуют только электронные устройства (солнечные контроллеры, сетевые или батарейные инверторы) – через примерно 15 лет. Если у вас есть в системе аккумуляторы, то их тоже придётся заменять через определённый интервал времени – в зависимости от глубины разряда и от количества циклов периодичность замены колеблется от 3 до 12 лет. Поэтому система с сетевыми фотоэлектрическими инверторами без аккумуляторов является предпочтительной – она требует минимального обслуживания и наиболее надёжна. Основной её недостаток – ваши солнечные панели перестают работать при перебоях централизованного электроснабжения. Если перерывы у вас редкие и кратковременные, то на этот недостаток можно не обращать внимания.
Факторы, которые влияют на окупаемость ваших вложений в солнечные батареи
Есть несколько переменных, которые влияют на окупаемость ваших солнечных панелей.
- Инфляция будет увеличивать тарифы на электроэнергию от сети каждый год. Целевая инфляция на 2017 год, которую хочет достичь Центробанк РФ – 4%. Как мы видим по опыту нескольких прошедших лет, инфляция колебалась от 7 до 16% в год. Цены на электроэнергию повышались еще больше, чем средняя инфляция. К началу 2018 года инфляция снизилась до целевых 4%, но рост тарифом на электроэнергию продолжается. Очередное повышение цен будет, как обычно, в июле.
- Увеличение цен на электроэнергию будет влиять на то, сколько денег вы сэкономите солнечными батареями на ваших счетах за электроэнергию. Чем выше будет цена, тем больше вы сэкономите.
- Цена на солнечные панели и их установку в валюте постепенно падает. Однако для цен в рублях это совсем не так. Те дальновидные потребители, которые купили солнечные панели в 2012-2014 годах защитили свои сбережения от падения курса рубля. Они “зафиксировали” курс на уровне 33 рублей за доллар и теперь окупаемость их солнечных панелей резко сократилась. У нас есть примеры наших клиентов, у которых солнечная электростанция окупилась уже на 4 года эксплуатации.
- Снижение процентных ставок на вклады в банках – инвестиции в солнечные батареи часто сравнивают с банковскими вкладами. Т.е. люди считают, что выгоднее – хранить деньги в банке и получать проценты, а на эти проценты покупать электроэнергию от местных энергосетей, или купить солнечные батареи и получать электроэнергию от них бесплатно. Во времена высоких процентов по вкладам (14-17% годовых) ответ был неоднозначен, и скорее всего в пользу банковского вклада. Но с 2018 года проценты по вкладам уже стали в среднем менее 5% годовых и продолжают снижаться – при таком “раскладе” инвестиции в солнечные батареи становятся более выгодными, чем банковские вклады. Не говоря уже о других инструментах – инвестиционных счетах, ПИФах и т.п., по которым доходность в последние 2-3 года существенно ниже доходности по банковским вкладам.
Убедитесь, что вы вкладываете деньги в высококачественные солнечные батареи. Для того, чтобы сделать правильный выбор, обязательно ознакомьтесь с нашим Руководством покупателя солнечных батарей.
Принцип работы
Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.
Схема работы фотоэлемента
Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.
Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.
Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов
Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).
На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.
Мобильный телефон Samsung E1107 оснащен солнечной батареей
Схема электропитания дома от солнца
Система солнечного электроснабжения включает:
- Гелиопанели.
- Контроллер.
- Аккумуляторы.
- Инвертор (трансформатор).
Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.
Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы
Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.
Разновидности солнечных батарей
Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.
Выделяют три вида фотоэлементов:
- поликристаллические;
- монокристаллические;
- аморфные.
Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.
Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.
Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.
Инструкция по изготовлению и сборке своими руками
Алгоритм действий:
- расчет параметров электрической системы питания;
- создание проекта;
- приобретение комплектующих деталей;
- изготовление несущей конструкции из фанеры, ДВП, деревянных реек;
- закрепление фотоэлементов, пайка проводников;
- установка защитной крышки из оргстекла;
- фиксация собранных панелей на опорной поверхности;
- подсоединение инвертора, АКБ, других функциональных блоков;
- проверка мощности генерации, иных параметров оборудования.
Рекомендуется изучить варианты подключения функциональных компонентов системы, чтобы обеспечивать выбор подходящей схемы.
Сколько стоит солнечная электростанция
Основным фактором, влияющим на стоимость СЭС, является ее будущая совокупная мощность. С учетом расходов на установку, пуско-наладку и оформление документов она колеблется в пределах $0,8-1,0 за 1 кВт. Плавающий диапазон цен образуется за счет второстепенных факторов – «брендовости» и качества оборудования и сложности монтажных работ.
Наиболее дешевым вариантом считается покупка б/у обрудования из Европы. Недостаток такого приобретения очевиден, и связан с невозможностью объективной оценки реальной эффективности станции и оставшийся срок службы панелей.
Вторым по уровню затрат является приобретение бюджетных комплектующих от малоизвестных китайских фирм. Их оборудование на 20-30% дешевле батарей, инверторов, аккумуляторов и периферии от компаний из всемирно известного рейтинга TIER-1 Bloomberg, но уступает качеством и долговечностью.
Поэтому перед покупкой специалисты советуют рассматривать только третий вариант и строить расчет на том, сколько будет стоить солнечная электростанция для дома от проверенных производителей.
Приведем несколько наиболее востребованных примеров.
1. Сколько стоит солнечная электростанция на 5 кВт
Ориентировочно вам понадобится приобрести следующий комплект для наиболее дешевой сетевой СЭС:
Комплектующие | К-во | Цена, $ |
Панели 250-275 Вт | 18-20 | 1800-2200 |
Инвертор на 5 kW | 1 | 700-900 |
Электроника и периферия | 700 | |
Итого: | ~ 3500 |
Таблица ориентировочной стоимости СЭС на 5 кВТ
С учетом расходов на сдачу «под ключ», куда войдет оформление «зеленого тарифа» и мульти тарифный счетчик с АСКУЭ, общая сумма составит примерно $ 4800.
Автономная станция обойдется немного дороже, поскольку потребует включения в список качественных АКБ, но исключение из него счетчика и оформления разрешений на «зеленый тариф».
2. Сколько будет стоить солнечная электростанция на 10 кВт
Принцип расчета здесь почти аналогичен. Вам потребуется приобрести:
Комплектующие | Количество | Стоимость, $ |
Панели 250-275 Вт | 36-40 | 4000 |
Инвертор на 10 kW | 1 | 1400 |
Электроника и периферия | 1300 | |
Мульти тарифный счетчик + установка | 1400 | |
Итого: | ~ 9100 |
Таблица ориентировочной стоимости СЭС на 10 кВТ
3. Сколько стоит солнечная электростанция на 30 кВт
Никаких принципиальных изменений при определении общей стоимости такой, второе более мощной СЭС, делать не нужно
Однако необходимо принять во внимание следующее соображение
Для такой станции потребуется более 100 батарей на 250-275 ватт, или около 200 кв. метров свободного пространства. Замена на более производительные 300-400 ваттные панели несколько сэкономит место, но южных скатов крыши даже большого дома может оказаться недостаточно. Поэтому необходимо будет рассмотреть вариант с установкой на земле. Но площадь свободного участка придется увеличить почти вдвое, чтобы не допустить падения тени от одних наклонно установленных модулей на другие, соседние.
Если это не проблема, понадобится выделить на покупку около $25-26 тыс., или почти 700 тыс. гривен.
Впрочем, окупаемость такой СЭС не превысит 5 лет, а далее начнет приносить постоянный доход более $4000 ежегодно.