Схема плавного включения лампы накаливания своими руками. плавное включение светодиодных ламп 220в

Вольтамперная характеристика светодиода (ВАХ)

Светодиод – нелинейный элемент электрической цепи, его ВАХ по форме практически идентична  обычному кремниевому диоду. На рисунке 1 приведена ВАХ мощного белого светодиода, одного из ведущих мировых производителей.

Рисунок 1

По графику видно, что при увеличении напряжения всего на 0,2 В (например, участок 2,9…3,1 В), сила тока увеличивается более чем в два раза (с 350 мА до 850 мА). Справедливо и обратное: при изменении тока в достаточно широких пределах, падение напряжения изменяется весьма незначительно

Это очень важно

Второй важный момент – падение напряжения от образца к образцу в одной партии может отличаться на несколько десятых долей вольта (технологический разброс). По этой причине источник питания светодиодов должен иметь стабилизацию  по току, а не по напряжению. Световой поток, кстати, нормируется также в зависимости от прямого тока. Теперь посмотрим, как эта информация пригодится при выборе схемы подключения.

Последовательное соединение (рисунок 2).

Рисунок 2

На схеме показано последовательное включение трех светодиодов HL1…HL3 к источнику постоянного тока J. Для простоты возьмем идеальный источник тока, т.е. источник, обеспечивающий  постоянный ток одинаковой величины, независимо от нагрузки. Поскольку сила тока в замкнутом контуре одинакова, через каждый элемент, последовательно включенный в этот контур, протекает ток одинаковой величины I1=I2=I3=J. Соответственно обеспечивается одинаковая яркость свечения. Разница в падениях напряжения на отдельных светодиодах не имеет в этом случае никакого значения и отражается только на величине разности потенциалов между точками 1 и 2.

Рассмотрим конкретный пример расчета подобной схемы. Пусть требуется обеспечить питание трех последовательно включенных светодиодов током 350 мА. Падение напряжения при этом токе по данным производителя может составлять значение от 2,8 В до 3,2 В.

Рассчитаем требуемый диапазон выходного напряжения источника тока:

Umin=2,8×3=8,4 В;

Umax=3,2×3=9,6 В.

Максимальная мощность потребляемая светодиодами составит P=9,6×0,35=3,4 Вт.

Таким образом источник должен иметь следующие параметры:

Выходной стабильный ток – 350 мА;

Выходное напряжение – 9 В ±0,6В (или ±7%);

Выходная мощность – не менее 3,5 Вт.

Все предельно просто.

Серийно выпускающиеся источники питания для светодиодов (драйверы) обычно имеют более широкий диапазон выходного напряжения, чтобы разработчик светотехнического устройства не был привязан к конкретному количеству излучающих диодов, а имел некоторую свободу действий. В таком случае можно к одному и тому же источнику подключать последовательно, например, от 1-го до  8-ми светодиодов.

Тем не менее, последовательная схема включения имеет свои недостатки.

  1. Во-первых, при выходе из строя одного из диодов в цепи – по понятным причинам гаснут и все остальные. Исключение – короткое замыкание светодиода – в этом случае цепь не обрывается.
  2. Во-вторых, при большом количестве светодиодов, сложнее реализовать низковольтное питание.

Например, в случае если стоит задача запитать 10 светодиодов последовательно (это падение напряжения порядка 30 В) от автомобильного аккумулятора, то без повышающего преобразователя не обойтись. А это уже дополнительные затраты, габариты и снижение КПД.

Параллельное соединение (рисунок 3).

Рисунок 3

Рассмотрим теперь параллельное соединение тех же светоизлучающих диодов.

Согласно первому закону  Кирхгофа:

J=I1+I2+I3,

Чтобы обеспечить каждому светодиоду одноваттный режим (I=350мА), источник тока должен выдавать 1050 мА при выходном напряжении порядка 3 В.

Как уже говорилось выше, светодиоды имеют некоторый технологический разброс параметров, поэтому на самом деле токи поделятся не поровну, а пропорционально своим дифференциальным сопротивлениям.

К примеру, если прямое падение напряжения, измеренное на этих светодиодах при токе 350 мА, составляло 2,9 В, 3 В, 3,1 В для HL1, HL2  и HL3 соответственно. То при включении по представленной схеме токи распределятся следующим образом:

I1≈360 мА;

I2≈350 мА;

I3≈340 мА.

Это значит, что и яркость свечения будет разная. Для выравнивания токов в такие цепи обычно последовательно светодиодам включают резисторы (рисунок 4).

Рисунок 4

Выравнивающие резисторы увеличивают потребляемую мощность общей схемы, а следовательно снижают эффективность.

Такой способ соединения чаще всего применяют с низковольтными источниками питания, например в портативных устройствах с электрохимическими источниками тока (аккумуляторами, батарейками). В других случаях рекомендуется соединить светодиоды последовательно.

Лампа накаливания

Начнем с простого — кусок провода. Его вольт-амперная характеристика (ВАХ) описывается формулой I=U/R. Фактически, это закон Ома для участка цепи. Увеличили напряжение в 2 раза — сила тока увеличилась так же в 2 раза, и график функции будет выглядеть как прямая линия, наклоненная под некоторым углом к оси X. Рассеиваемая мощность на таком проводнике будет равна W=I*U=U^2/R. Увеличили напругу в 2 раза — рассеиваемая мощность увеличилась в 4-ре. Все предельно ясно.

Теперь посмотрим на ВАХ обычной ламы накаливания:

Рис. 1. ВАХ лампы накаливания.

Можно заметить, что прямую она напоминает только в самом-самом своем начале. Далее сила тока выходит на некоторое значение, которое слабо зависит от изменения силы тока. Почету так? Тут не работает закон Ома? Все просто. Как известно, сопротивление металла увеличивается при увеличении его температуры, а спираль лампы накаливания как-никак нагревательный прибор. И при увеличении напряжения, сила тока так же увеличивается, увеличивается рассеиваемая на спирали мощность и она сильнее разогревается, ее сопротивление начинает увеличиваться, ток начинает падать устаканивается на каком-то определенном значении. Можно сказать, что сопротивление лампы накаливания зависит от напряжения, приложенного к ней, поэтому ВАХ лампы накаливания будет иметь вид, не похожий на ВАХ простого проводника (при условии, что мы не будем пропускать через проводник такой ток, что он превратится в печку).

Из графика видно, что при увеличении напряжения в 2 раза, а именно с 2-х вольт до 4-х, ток возрастет с 0,2А до ~0,225А, а рассеиваемая мощность увеличится в W2/W1=(4*0.225)/(2*0.2)=2.25 раз, а не в 4, как с простым куском провода. Поэтому лампа накаливания может с легкостью пережить серьезные перегрузки без повреждений (по крайней мере качественные экземпляры, а не тот шлак, который сейчас продается повсеместно).

Но это справедливо только для плавного изменения напряжения на лампочке, то есть когда все переходные процессы, связанные с изменением температуры спирали намного быстрее скорости изменения напряжения на ней. Если же это условие не соблюдается, например, в момент включения, когда спираль еще холодная, сила тока через лампу накаливания при данном напряжении может превышать значение из графика в несколько раз. Поэтому лампы накаливания чаще дохнут в момент включения. Раз уже взялись за лампочки, то давайте разберемся, почему это так.

В идеальном случае нить накаливания однородна на всей своей длине. Но ни чего идеального в мире нет, в том числе и спиралей у лампочек. Всегда найдутся участки, которые чуть-чуть тоньше, чем средняя толщина спирали по всей длине. А если участок тоньше, то его сопротивление больше (следует из формулы сопротивления проводника, R=/S).

Разобьем спираль лампы накаливания на небольшие и равные участки, и обозначим их как резисторы. При этом, у нас есть участок, сопротивление которого в 10 раз больше остальных. Вычислим рассеиваемую мощность на каждом резисторе. При этом не забываем, что при последовательном соединении сила тока во всех резисторах одинакова.

Рис. 2. Эквивалентная схема участка нити накала лампочки

Получаем, что на участках с сопротивлением 1R, рассеивается мощность W=1RI², а для участка с сопротивлением 10R W=10RI². Вот и получаем, что мааааленький участок спирали будет иметь локальный перегрев. А если учесть то, что пусковой ток лампочки довольно большой, этот участок будет деградировать быстрее, рассеиваемая мощность будет расти еще больше, и в один прекрасный момент, спираль перегорит. Вот так.

Для того, чтобы продлить срок службы ламп накаливания одни советуют вообще их не выключать, другие снижать действующее напряжение питания лампы путем последовательного включения полупроводникового диода. Так же есть специальные схемы плавного пуска, которые ограничивают пусковой ток и плавно разогревают спираль.

Плавное включение и выключение светодиодов

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение. Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени.

То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды.

Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов. К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на  2,2 секунды.

Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).

Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED  с входом управления.

Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу.

В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet).

Выбор диодов и изготовление выпрямителя

Диоды в выпрямитель выбираются по трем параметрам:

  • наибольшее допустимое прямое напряжение;
  • наибольшее обратное напряжение;
  • наибольший рабочий ток.

По первым двум параметрам для работы в 12-вольтовой схеме подойдут 90 процентов доступных полупроводниковых приборов, выбор в основном делается по предельному длительно допустимому току. От этого параметра также зависит исполнение корпуса диода и способ изготовления выпрямителя.

Если ток нагрузки не будет превышать 1 А, можно применить зарубежные и отечественные одноамперные диоды:

  • 1N4001-1N4007;
  • HER101-HER108;
  • КД258 (“капелька”);
  • КД212 и другие.

На меньшие токи (до 0,3 А) рассчитаны приборы КД105 (КД106). Все перечисленные диоды можно монтировать как вертикально, так и горизонтально на печатную или монтажную плату, или просто на штырьки. Радиаторов им не нужно.

Диодный мост из маломощных элементов.

Если нужны большие рабочие токи, то надо применять другие диоды (КД213, КД202, КД203 и т.д.). Эти приборы рассчитаны для эксплуатации на теплоотводящих радиаторах, без них они выдержат не более 10% от максимального паспортного тока. Поэтому надо подобрать готовые теплоотводы или сделать их самостоятельно из меди или алюминия.


Другая конструкция диодного моста.

Также удобно использовать готовые мостовые диодные сборки КЦ405, КВРС или подобные. Их не надо собирать – достаточно подать на соответствующие выводы переменное напряжение и снять постоянное.


Сборка КВРС3510.

Расчет подключения светодиодов в схемах на 12 и 220 воль т

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 воль т в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 воль там. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 воль т. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.

Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Как подключить LED к 3 или 5 вольтам

Большинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле.

Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах.

Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже.

Цоколевка светодиодов

Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.

Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.

Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.

Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.

Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:

Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.

Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.

Обозначение светодиодов на схеме

Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.

Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.

Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.

Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.

В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

Основные выводы

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока

Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является « » или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). 
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

При подключении светодиодной лампы к любому блоку питания учитывается:

  • рабочий ток лампочки;
  • сопротивление и мощность стабилизирующего элемента;
  • для подключения к аккумулятору автомашины при расчетах используется не 12 В, а 14,5 В.

Схема подключения не меняется зависимости от мощности светодиода

При соединении с другими элементами схемы важно учесть полярность, так как ток в этих источниках света течет только в одном направлении

Если используется драйвер, то перед подключением желательно проверить его мощность (особенно, если деталь китайская)

Важно так же учесть, что падение напряжения на лед-лампах зависит от их цвета

Вольт-амперная характеристика светодиода

Для установки LED ламп существует несколько важных принципов, которых следует придерживаться:

Важно соблюдать полярность при подсоединении светодиода. Иначе он быстрее выйдет из строя или не будет светиться вообще

Расположение анода и катода указано на цоколе лампочки в виде насечек, зеленых точек. Запрещено в одну линию и на один резистор последовательно монтировать лампы разного цвета. Это влияет на их производительность и в принципе свечение. Информацию о полярностях можно найти в технической документации к LED.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрик в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector